Меню Рубрики

Действие электрического тока на магнитную стрелку открыл

Электрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает — ток есть. Если типичное сопутствующее току явление наблюдается — ток в цепи есть, и т. д.

Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.

В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, — это тоже тепловое действие тока.

Выделяемое на участке цепи количество теплоты зависит от приложенного к этому участку напряжения, значения протекающего тока и от времени его протекания (Закон Джоуля — Ленца).

Преобразовав закон Ома для участка цепи, можно для вычисления количества теплоты использовать либо напряжение, либо силу тока, но тогда обязательно необходимо знать и сопротивление цепи, ведь именно оно ограничивает ток, и вызывает, по сути, нагрев. Или, зная ток и напряжение в цепи, можно так же легко найти количество выделяемой теплоты.

Химическое действие электрического тока

Электролиты, содержащие ионы, под действием постоянного электрического тока подвергаются электролизу — это и есть химическое действие тока. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы). То есть вещества, содержащиеся в электролите, в процессе электролиза выделяются на электродах источника тока.

Например, в раствор определенной кислоты, щелочи или соли погружают пару электродов, и при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом — отрицательный. Ионы содержащиеся в растворе начинают откладываться на электроде с противоположным зарядом.

Скажем, при электролизе медного купороса (CuSO4), катионы меди Cu2+ с положительным зарядом движутся к отрицательно заряженному катоду, где они получают недостающий заряд, и становятся нейтральными атомами меди, оседая на поверхности электрода. Гидроксильная группа -OH отдаст электроны на аноде, и в результате выделится кислород. Положительно заряженные катионы водорода H+ и отрицательно заряженные анионы SO42- останутся в растворе.

Химическое действие электрического тока используется в промышленности, например, для разложения воды на составляющие ее части (водород и кислород). Также электролиз позволяет получать некоторые металлы в чистом виде. С помощью электролиза покрывают тонким слоем определенного металла (никеля, хрома) поверхности — это нанесение гальванических покрытий и т.д.

В 1832 году Майкл Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит. Если через электролит пропускается в течение времени t постоянный ток I, то справедлив первый закон электролиза Фарадея:

Здесь коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Магнитное действие электрического тока

При наличии электрического тока в любом проводнике (в твердом, жидком или газообразном) наблюдается магнитное поле вокруг проводника, то есть проводник с током приобретает магнитные свойства.

Читайте также:  Звездочка на бензопилу поулан

Так, если к проводнику, по которому течет ток, поднести магнит, например в виде магнитной стрелки компаса, то стрелка повернется перпендикулярно проводнику, а если намотать проводник на железный сердечник, и пропустить по проводнику постоянный ток, то сердечник станет электромагнитом.

В 1820 году Эрстед открыл магнитное действие тока на магнитную стрелку, а Ампер установил количественные закономерности магнитного взаимодействия проводников с током.

Магнитное поле всегда порождается током, то есть движущимися электрическими зарядами, в частности — заряженными частицами (электронами, ионами). Противоположно направленные токи взаимно отталкиваются, однонаправленные токи взаимно притягиваются.

Такое механическое взаимодействие происходит благодаря взаимодействию магнитных полей токов, то есть это, в первую очередь, — магнитное взаимодействие, а уж потом — механическое. Таким образом, магнитное взаимодействие токов первично.

В 1831 году, Фарадей установил, что изменяющееся магнитное поле от одного контура порождает ток в другом контуре: генерируемая ЭДС пропорциональна скорости изменения магнитного потока. Логично, что именно магнитное действие токов используется по сей день и во всех трансформаторах, а не только в электромагнитах ( например, в промышленных).

Световое действие электрического тока

В простейшем виде световое действие электрического тока можно наблюдать в лампе накаливания, спираль которой разогревается проходящим через нее током до белого каления и излучает свет.

Для лампы накаливания на световую энергию приходится около 5% от подведенной электроэнергии, остальные 95% которой преобразуется в тепло.

Люминесцентные лампы более эффективно преобразуют энергию тока в свет — до 20% электроэнергии преобразуется в видимый свет благодаря люминофору, принимающему ультрафиолетовое излучение от электрического разряда в парах ртути или в инертном газе типа неона.

Более эффективно световое действие электрического тока реализуется в светодиодах. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Лучшие излучатели света относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), например GaAs, InP, ZnSe или CdTe. Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). КПД светодиода как источника света доходит в среднем до 50%.

Механическое действие электрического тока

Как было отмечено выше, каждый проводник, по которому течет электрический ток, образует вокруг себя магнитное поле. Магнитные действия превращаются в движение, например, в электродвигателях, в магнитных подъемных устройствах, в магнитных вентилях, в реле и т. д.

Механическое действие одного тока на другой описывает закон Ампера. Впервые этот закон был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна току в проводнике и векторному произведению элемента длины проводника на магнитную индукцию.

На этом принципе основана работа электродвигателей, где ротор играет роль рамки с током, ориентирующейся во внешнем магнитном поле статора вращающим моментом M.

В 1820 году датский ученый Ханс Кристиан Эрстед обнаружил, что вблизи проводника с током магнитная стрелка поворачивается, ориентируясь перпендикулярно проводнику. Вскоре после этого французский ученый Андре Мари Ампер открыл, что проводники с током также взаимодействуют друг с другом.

Читайте также:  Заливное из морепродуктов рецепт с фото

Дальнейшие исследования показали, что взаимодействие проводников, по которым текут токи, осуществляется посредством магнитного поля, которое создается движущимися зарядами и действует тоже на движущиеся заряды.

Магнитное действие тока сыграло огромную роль в распространении электричества: чуть заметное движение магнитной стрелки «преобразилось» сегодня в неутомимую работу миллионов электродвигателей.

Магнитное действие тока замечательно тем, что оно проявляется всегда (химическое действие тока отсутствует при прохождении тока через металлы, а тепловое — при прохождении тока через сверхпроводники). Поэтому магнитное действие тока используют для измерения силы тока.

Апрель и 1820 году выдался на редкость холодным. Зима, казалось, и не собиралась отступать. Редкие прохожие торопливо шли по улицам Копенгагена. Был среди них и профессор Ганс Христиан Эрстед — датский физик и химик, который вот уже четырнадцать лет преподавал в копенгагенском университете. Дойдя до университетского здания, профессор быстро поднялся по лестнице и с облегчением накрыл за собой тяжелую дверь. Ответив на поклон швейцара, он направился к свой кабинет, чтобы повесить пальто и шляпу. Времени до начала утренней лекции оставалось немного. Эрстед бегло просмотрел записи и направился в аудиторию. В этот день, который потом вошел в историю, он читал лекцию старшекурсникам. Как только профессор появился на пороге, гомон, царивший в аудитории, моментально стих. Взоры всех обратились к этому неказистому человеку в темном сюртуке, из ворота которого выглядывал туго накрахмаленный белый воротничок.

— Доброе утро, господа, — произнес профессор. — Наша сегодняшняя лекция посвящена, как я вам уже говорил прошлый раз, вольтову столбу. Двадцать лет назад превосходный итальянский физик Алессандро Вольта, изучал электрические явления и сконструировал прибор, который служит источником электрического тока. Он состоял из хороших проводников разного вида — примерно двух десятков медных или серебряных пластин, каждая из которых находилась на цинковой пластине и была прикрыта кусочком картона, сукна или кожи, пропитанных жидкостью, проводящей электрический ток, например раствором поваренной соли, гидратом окиси калия, либо щелочью. Эти слои, располагавшиеся в очередности: цинк, медь, прослойка материала, пропитанного электролитом, образовывали нечто вроде столбика, отсюда и взялос название прибора — вольтов столб.

Профессор Эрстед продолжал свой рассказ, поясняя его рисунками на доске. Проведя линии от основания и верхушки вольтова столба, профессор снова обратился к аудитории:
— Если к концам столба подсоединить куски проволоки, то можно убедиться, что он действительно является источником электрического тока. Правда, Он не дает таких сильных искр, как электрическая машина или заря женнйя сю лейденовсКая банка, зато и разряжается гораздо медленнее. Если дотронуться одновременно до обоих концов, можно почувствовать сильный электрический удар.

Сказав это, профессор подошел к стоящему сбоку столу и произнес:
— Вы можете, господа, проверить на практике мои слова. Я приготовил здесь вольтов столб, о котором только что рассказал вам. Пожалуйста, можете убедиться, как он действует.

Студенты столпились вокруг стола, на котором стоял прибор. Один из них тщательно осмотрел устройство и набравшись смелости, взялся за концы провода, подсоединенные к концам столба, но тотчас же отпрянул назад. И не удивительно, ведь вольтов столб — это ни что иное, как большая электрическая батарея. А как известно, удар электрического тока особого удовольствия не доставляет.

Эрстед, видя, что пример смельчака произвел на всех большое впечатление, попросил студентов занять свои места. Лекция уже подходила к концу, и он хотел еще сказать пару слов о следующей теме. Поставив на столе около вольтова столба магнитную стрелку, ученый обратился к студентам:

— На следующей лекции я хочу рассказать вам о магнитных явлениях. Я глубоко убежден, что существует связь между электричеством и магнетизмом. Но, увы, ни мне, ни другим физикам не удалось пока что обнаружить ее. Электрическая батарея, которую вы здесь видите, не действует на магнитную стрелку. Можете сами убедиться в этом.
И тут произошло нечто совершенно непредвиденное, прямо противоположное тому, о чем говорил известный физик. Как только замкнулась электрическая цепь, стрелка дрогнула и отклонилась в сторону. Ученый был настолько потрясен, что на какой-то миг забыл о присутствии студентов. Его брови от удивления поползли вверх, а лицо покраснело от волнения.

Читайте также:  Дом павла воли и лейсан утяшевой фото

— Невероятно! — произнес он наконец. Дрожащей рукой профессор разъединил цепь. Стрелка немедленно вернулась в первоначальное положение. Он снова замкнул цепь — стрелка опять отклонилась. Эрстед предложил собравшимся вокруг стола студентам собственноручно проверить, как ведет себя магнитная стрелка в присутствии электрического тока. Увидев, что совершенное только что открытие не произвело на студентов особого впечатления, ученый быстро закончил лекцию и отпустил их, а сам немедленно взялся за изучение влияния проводника с идущим по нему током на магнитную стрелку.

Очень быстро ученый отказался от предположения, что стрелка отклоняется под влиянием движения теплого воздуха, нагреваемого проволокой. Он убедился, что наблюдаемое явление происходит и тогда, когда между проволокой, по которой идет ток, и магнитом помещается тело, не обладающее магнитными свойствами, например кусок картона. Но в присутствии тел, обладающих магнитными свойствами, оно не наблюдалось.

Описывая свои опыты в работе «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку», датский ученый обратил внимание на то, что электрические заряды могут воздействовать на магнит, если они движутся, т.е. если образуется электрический ток. В то же время покоящиеся заряды, например в лейденовской банке, не обладают такими свойствами. В этом и состояла сущность открытия, совершенного Эрстедом. Все его предшественники совершали ошибку, полагая, что им удастся открыть связь магнетизма и электричества, изучая покоящиеся заряды.

В упомянутой работе, которая была опубликована в июле 1820 года, датский ученый писал: “Если поместить проводник с током над стрелкой, параллельно ей, то конец стрелки, расположенный ближе к отрицательному полюсу батареи, отклонится на запад. При расстоянии в 3/4 дюйма отклонение достигало 45°”. Далее ученый описывал поведение магнитной стрелки при разных положениях проводника и выдвигал предположение относительно размещения сил в воздухе. Наблюдаемое воздействие электрического тока он назвал “conflictus electrici” — электрическим конфликтом, указав, что это явление наблюдается в воздухе вокруг проводника, по которому проходит ток.

Работа «Опыты, относящиеся к дей ствию электрического конфликта на магнитную стрелку», была разослана во многие научные общества и журналы, ко многим ученым Дании и других стран. Повсюду она вызвала огромный интерес. Целый ряд физиков начал вес ти энергичные исследования в области электромагнетизма. В конечном итоге это привело к созданию электрических двигателей, генераторов, электромагнитов и многих других устройств, без которых немыслимо развитие современной техники.
Датский физик приобрел междуна родную известность. По приглашению разных научных обществ он читал лекции в разных странах, поддерживал оживленные связи с европейскими учеными. Ганс Христиан Эрстед считается одним из величайших физиков XIX века. Его именем названа единица напряженности магнитного поля.
Е. ВЕЖБОВСКИИ
Журнал “Горизонты техники для детей” №6-74г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector