Меню Рубрики

Генератор для проверки кварцевых резонаторов

В радиолюбительской практике довольно часто возникает необходимость в управляемом генераторе высокой частоты, например для проверки пьезокерамических и кварцевых резонаторов. В статье будет рассмотрена схема генератора высокой частоты с регулируемой частотой до 80 МГц. Ранее мы уже писали о том, как проверить кварцевый резонатор, теперь вашему вниманию предлагается еще один вариант устройства для проверки кварцевых резонаторов. Отличия в схемах конечно же есть, есть и разница в функциональности, одним словом выбирать вам.

В качестве задающего генератора выступает цифровая интегральная микросхема DD1 типа КР531ГГ1. По сути, микросхема представляет из себя два управляемых генератора. Рабочая частота этих управляемых генераторов определяется подключенными к выводам С1 и С2 генератора кварцевыми или пьезокерамическими резонаторами, конденсаторами. В рассматриваемой схеме генератора высокой частоты задействован только первый генератор микросхемы. Для облегчения запуска генератора с пьезокерамическими резонаторами, рабочая частота которых менее 4 МГц, параллельно с ним к выводам С1, С2 подключается резистор R1.

Возбуждение проверяемых резонаторов будет происходить на частоте основного резонанса, то есть на частоте первой гармоники. Необходимо это учитывать при выполнении проверки резонаторов, которые предназначены для работы в радиопередающих и радиоприемных устройствах. Для примера, гармониковые кварцы с рабочей частотой 27 МГц (третья гармоника) будут входить в возбуждение соответственно на частоте 9 МГц. Делитель частоты на 2 и 4 собран на микросхеме DD2.

Сигнал высокой частоты с выхода F задающего генератора DD1.1 через токоограничивающий резистор R2 поступает на вход С (вывод 3) триггера DD2.1, а в последствии деленный на 2, с выхода этого D-триггера сигнал с уже вдвое меньшей частотой, чем частота задающего генератора попадает на второй триггер микросхемы DD2.1, который включен аналогичным образом. Таким образом, на выходе делителя частоты мы получаем сигнал частота, которого в 4 раза меньше, чем частота задающего генератора.

О том, что проверяемый резонатор возбуждается сигнализирует светодиод HL2. В качестве буферных элементов используется микросхема DD3. Что позволяет повысить стабильность работы DD1, DD2, устранив влияние подключенной нагрузки. К генератору высокой частоты для мониторинга можно подключить частотомер, который способен производить измерения сигналов частота которых не меньше 80 МГц. Можно также на подключенный частотомер подавать сигналы от задающего генератора DD1, или уже с делителя с частотой в 2 или 4 раза меньшей, что может быть полезно, когда применяется выносной щуп частотомера и соединительный кабель, имеющий недостаточную полосу пропускания.

Питание примененных в генераторе интегральных цифровых микросхем осуществляется от источника стабилизированного напряжения, собранного на стабилизаторе DA1. В целом генератор довольно экономичный, так при работе генератора на частоте 50 МГц он потребляет по цепи питания ток около 100 мА. О наличии напряжения питания сигнализирует светодиод HL1. Для защиты устройства от подачи питания обратной полярности служит диод VD1.

Внешний вид готовой платы:

В первом варианте готового устройства монтаж велся навесным способом, соединение производилось тонким монтажным проводником, а весь слой фольги был использован как общий провод. Следует быть очень внимательным при разводке сигнальных цепей и цепей питания, так как высокочастотные микросхемы серий КР531, 74F при неудачно выполненном монтаже способны генерировать помехи с довольно широким спектром частот.

Детали. Взамен микросхемы КР531ГГ1 можно использовать КР1531ГГ1, К531ГГ1П. Вместо импортной микросхемы MC74F74N можно использовать любую из серии 74F74N или заменить отечественной КР531ТМ2. Если внести небольшие изменения в принципиальную схему, можно взамен этой микросхемы использовать делитель на 10, как вариант, собранный на микросхеме КР531ИЕ9. Микросхему MC74F00N можно заменить на любую из серии 74F00N или на отечественный аналог КР531ЛАЗ, КР1531ЛАЗ. Следует отметить, что при применении отечественных микросхем ток, потребляемый устройством, может незначительно возрасти.

Читайте также:  Встраиваемый светильник эра светодиодный круглый led 6вт

Если возникнут сложности в приобретении таких микросхем, вместо DD2 и DD3 можно временно установить подходящие микросхемы серии КР1533, но надо иметь ввиду, что диапазон частот кварцевого резонатора при этом снизится до 50. 70 МГц. Стабилизатор на напряжение +5 В типа L7805ACV может быть заменен на любой из серии 7805 или отечественную интегральную микросхему КР142ЕН5А или КР142ЕН5В. Следует учесть, что некоторые стабилизаторы напряжения имеют нижнюю границу минимального напряжения от 7 В до 8 В.

Следуя рекомендациям микросхему стабилизатора напряжения следует устанавливать на небольшой теплоотвод. Вместо диода 1N4001 можно использовать аналогичный из серий КД243, КД226. Диоды 1N4148 могут быть заменены на диоды серий КД409, КД503, 2Д419. К светодиодам особых требований не предъявляется, подойду светодиоды общего применения любого типа. Конденсаторы оксидного типа К53-19, К53-30, К50-35 или их импортные аналоги. Неполярные – керамические конденсаторы К10-17 или аналогичные импортного производства. Можно использовать любые малогабаритные резисторы, например самые распространенные – МЛТ.

Для того, чтобы можно было проверять резонаторы с разным диаметром контактов следует предусмотреть две различные панельки. Длина проводов от выводов С1, С2 микросхемы DD1 должна быть минимальной. Для изменения диапазона рабочих частот генератора от 760 кГц до 12МГц вместо кварцевого резонатора ZQ1 к панелькам необходимо подсоединить конденсатор переменной емкости 20 – 540 пФ. Кроме этого высокочастотный генератор можно доработать, если вместо кварцевого резонатора ZQ1 будет установлен частотозадающий конденсатор, выход F DD1.2 соединить с входом Uc (вывод 2) или Uд (вывод 3) DD1.1, вход Е DD1.2 необходимо соединить с общим проводом, а к выводам С1 и С2 DD1.2 подсоединить конденсатор емкостью 0,22 мкФ.

Генератор DD1.2, после таких доработок, будет работать с частотой 2 кГц, а на выходе 7 DD1, получим частотно-модулированный сигнал. Кроме сказанного, на входы Uд и Uc одновременно можно подать противофазные модулирующие сигналы, как вариант, с выхода 6 инвертора DD3.1 и выхода 7 DD1. А вот для уменьшения девиации частоты эти модулирующие сигналы следует подавать через подстроечные резисторы 220. 470 Ом. Кроме кварцевых или пьезокерамических резонаторов можно подключать и пьезокерамические фильтры. Высокочастотный генератор можно использовать помимо проверки кварцевых резонаторов и, например как калибратор, генератор звуковых эффектов, микропередатчик, устройство для измерения емкости конденсаторов.

С помощью этого пробника можно не только проверить работоспособность кварце­вого резонатора, но и определить его основ­ную резонансную частоту. Пробник представ­ляет собой типовую схему кварцевого гене­ратора на транзисторе. Кварцевый резонатор включается между базой транзистора и общим минусом. Конденсатор С1 служит для защиты от случая при коротком замыкании в неисправном кварцевом резонаторе. Хотя, такой уж большой необходимости в этом кон­денсаторе нет, и его можно убрать. Вообще, этот конденсатор здесь есть для того, чтобы данный пробник можно было использовать не только для проверки кварцев, но и для предварительной настройки LC -контуров.

При подключении резонатора схема пере­ходит в режим генерации и на эмиттере VT 1 появляется переменное напряжение по частоте равное основной резонансной час­тоте проверяемого кварцевого резонатора. Подключенный частотомер покажет эту частоту. Частота должна быть стабильной и не изменяться существенно от легких ударов по корпусу резонатора или его небольшого нагрева (от поднесения к нему паяльника). Если резонатор не исправен генерации не будет или будет, но нестабильная или совсем не на той частоте.

Этот же пробник можно использовать и для предварительной настройки LC -контуров на необходимую частоту. Правда, при этом в схеме должен быть С1. Просто подключаете LC -контур вместо резонатора. Генератор начинает работать и генерировать частоту настройки контура. Далее, подогнать контур на нужную частоту можно соответствующей подстройкой его L и С параметров.

Читайте также:  Molex на материнской плате

Пробник хорошо работает на частотах до 15-20 МГц. На более высокой частоте генерация может и не возникн уть даже при исправном резонаторе.

На транзисторе VT1 собран генератор задающим частоту которого элементом является проверяемый кварцевый резонатор. Когда испытуемый кварц подключен, генератор запускается на частоте его основного резонанса (а ведь на некоторых пишут частоты гармоник). Сигнал от генератора проходит через конденсатор с3 (чтобы отфильтровать постоянную составляющую) и попадает на аналоговый частотомер переменного напряжения на элементах VD1, VD2, c4, R3 и микроамперметре. Это именно простейший аналоговый частотомер, так как в зависимости от частоты прямо пропорционально изменяется действующее на с4 напряжение, то есть чем выше частота резонанса кварца, тем выше на нём напряжение. Данным пробником можно не только определить работоспособность кварцевого резонатора, но и примерно определить частоту его основного резонанса, т.к. на некоторых пишут частоту гамоники (например третей). То есть на резонаторе, например, написано 27 Мгц, а реальная частота резонанса может оказатся 9МГц. Есть разница?

Предлагаемая радиолюбителям для повторения конструкция предназначена для проверки кварцевых и пьезокерамических резонаторов, а также как управляемый генератор частот до 80 МГц.

На интегральной микросхеме DD1 типа КР531ГГ1 построен задающий генератор. Эта микросхема представляет собой два управляемых генератора, частота работы которых задается подключенными к ее выводам С1, С2 кварцевыми, пьезокерамическими резонаторами или конденсаторами. В этом устройстве используется только один генератор этой микросхемы. Подключенный к выводам С1, С2 резистор R1 облегчает запуск генератора с резонаторами с рабочей частотой менее 4 МГц. Все проверяемые резонаторы будут возбуждаться на частоте основного резонанса – первой гармонике. Это следует учитывать при проверке резонаторов, предназначенных для работы в радиоприемных и радиопередающих устройствах. Например, гармониковые кварцы на частоту 27 МГц (третья гармоника) будут возбуждаться на частоте 9 МГц.

На микросхеме DD2 собран делитель частоты на 2 и 4. Сигнал высокой частоты с выхода F DD1.1 через резистор R1 поступает на вход С D-триггера DD2.1, включенным делителем частоты на 2, с выхода этого триггера сигнал с частотой вдвое меньшей частоты задающего генератора поступает на второй D-триггер DD2.1, включенным аналогичным образом. В итоге, на выходе делителя частоты получается сигнал с частотой в 4 раза меньшей частоты задающего генератора. Светодиод HL2 сигнализирует своим свечением то, что проверяемый резонатор возбуждается. Микросхема DD3 используется в качестве буферных элементов, что устраняет влияние подключенной нагрузки на стабильность работы DD1, DD2. К прибору для контроля частоты можно подключить частотомер, способный измерять сигналы с частотой не менее 80 МГц. На частотомер можно подавать сигнал как с частотой работы задающего генератора DD1, так и с частотой вдвое или вчетверо меньшей, что может быть полезным при использовании выносного щупа частотомера и соединительного кабеля с недостаточной полосой пропускания. Все примененные интегральные цифровые микросхемы получают питание от источника стабильного напряжения, построенного на стабилизаторе DA1. При возбуждении генератора на частоте 48 МГц устройство потребляет от источника питания ток около 90 мА. Светодиод HL1 сигнализирует о наличии напряжения питания. Диод VD1 защищает устройство от подачи напряжения питания обратной полярности.

В авторском варианте монтаж элементов выполнен навесным способом тонким монтажным проводом, при этом весь слой фольги используется как общий провод. Следует заметить, что разводка цепей питания и сигнальных цепей требует аккуратности и понимания, поскольку микросхемы серий КР531, 74F весьма высокочастотны и при неудачном монтаже могут генерировать помехи с широким спектром частот.

Читайте также:  Вибратор и резонатор герца

Детали. Вместо микросхемы КР531ГГ1 можно применить КР1531ГГ1, К531ГГ1П. Возможно, существует импортный аналог из серии 74F124N. Импортную микросхему MC74F74N можно заменить любой из серии 74F74N или отечественной КР531ТМ2. Немного изменив принципиальную схему, можно на месте этой микросхемы установить делитель на 10, например, собранный на микросхеме КР531ИЕ9, 74F160N с любым префиксом. Можно использовать и другие ТТЛ или КМОП делители частоты, способные работать на частоте не менее 80 МГц при напряжении питания +5 В. Микросхему MC74F00N можно заменить любой из серии 74F00N или отечественной КР531ЛАЗ, КР1531ЛАЗ. При применении отечественных микросхем потребляемый устройством ток может немного возрасти. Если не удастся приобрести такие микросхемы, то можно временно вместо DD2 и DD3 установить соответствующие микросхемы серии КР1533, при этом рабочий диапазон частот устройства снизится до 50. 70 МГц. Вместо интегрального стабилизатора на фиксированное выходное напряжение +5 В типа L7805ACV можно установить любой из серии 7805 в корпусе ТО-220 или отечественную ИМС КР142ЕН5А, КР142ЕН5В. При использовании некоторых стабилизаторов нижняя граница минимального напряжения питания может увеличиться с 7 В до 8 В. Микросхему стабилизатора напряжения устанавливают на небольшой теплоотвод. Диод 1N4001 можно заменить любым из серий 1 N4001-1 N4007, КД243, КД226. Вместо диодов 1N4148 подойдут диоды серий КД503, КД409, 2Д419. Светодиоды подойдут любого типа общего применения.

Оксидные конденсаторы К50-35, К53-19, К53-30 или импортные аналоги. Неполярные конденсаторы – керамические К10-17 или аналогичные импортные. Резисторы любого типа малогабаритные, например С1-4, С2-23, МЛТ. Для проверки резонаторов с разным диаметром выводов установлены две различные панельки. Длина проводников от выводов С1, С2 DD1 должна быть как можно короче. Если вместо резонатора ZQ1 к панелькам подключить малогабаритный переменный конденсатор емкостью 20. 540 пФ, то частоту работы генератора можно изменять от 12 МГц до 760 кГц. Устройство можно усовершенствовать, если на место ZQ1 будет подключен частотозадающий конденсатор, вход Е DD1.2 соединяется с общим проводом, выход F DD1.2 соединяется с входом Uд или Uc DD1.1, к выводам 12 и 13 DD1 подключают конденсатор емкостью 0,22 мкФ. После всего этого генератор DD1.2 будет работать на частоте 2 кГц, а на выходе F DD1.1, вывод 7, будет частотно модулированный сигнал. Кроме того, на входы Uд, Uc можно одновременно подавать противофазные модулирующие сигналы, например, с выхода F DD1.1 и выхода инвертора DD3.1. Для уменьшения девиации частоты модулирующие сигналы можно подавать через подстроечные резисторы сопротивлением по 220. 470 Ом. В качестве резонаторов можно использовать не только кварцевые или пьезокерамические резонаторы, но и пьезокерамические фильтры, например генератор, очень хорошо возбуждается с фильтрами на 10,7 МГц от УКВ радиоприемников. Устройство можно использовать не только для проверки резонаторов, но и как калибратор, микропередатчик, генератор звуковых эффектов, измеритель емкости конденсаторов. Область применения микросхемы КР531ГГ1 не ограничивается только рассказанными в этой статье вариантами, а дешевизна и доступность этой микросхемы позволяет провести с ней множество экспериментов, что способствует разнообразию радиолюбительских будней и расширению интересов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *