Содержание
Linear Technology LT1721
Jim Williams, Linear Technology
Если требуются очень короткие импульсы, запускаемые внешним сигналом, например, для таких приложений, как устройства выборки, этот предсказуемо программируемый генератор будет вам полезен. Длительность выходного сигнала схемы на Рисунке 1, сделанной на счетверенном высокоскоростном компараторе и быстродействующем логическом элементе, регулируется от 0 до 10 нс при длительности фронта 520 пс и амплитуде 5 В. При отклонении напряжения питания 5 В на 65% длительность импульса меняется менее чем на 100 пс. Минимальная длительность входного импульса запуска равна 30 нс, а задержка между входом и выходом составляет 18 нс.
Рисунок 1. | Этот генератор формирует импульсы длительностью от 0 до 10 нс с передним фронтом 520 пс. Компаратор IC1 разгружает согласующий резистор дифференциальными цепями задержки. Комплементарные выходы микросхем IC2-IC3 отображают разность задержек сдвигом передних фронтов своих импульсов. Выходной положительный импульс логического элемента G1 существует в течение времени, пока сигналы на обоих выходах компараторов IC2-IC3 имеют высокий уровень. |
Компаратор IC1 инвертирует входной импульс (Рисунок 2, осциллограмма A) и изолирует от остальной схемы согласующий резистор 50 Ом. Выход IC1 подключен к двум RC-цепочкам – с фиксированной и переменной постоянными времени. Программирующий резистор RG в основном определяет разность постоянных времени заряда цепочек и, следовательно, задержку, масштаб которой равен примерно 80 Ом/нс. Компараторы IC2 и IC3, включенные детекторами уровней с противоположной полярностью выходных сигналов, отображают разность задержек сдвигом передних фронтов своих импульсов. Выходной сигнал компаратора IC3 в канале с фиксированной задержкой представлен осциллограммой B, а сигнал на выходе IC2 в канале с переменной задержкой – осциллограммой C. Выходной импульс схемы на выходе логического элемента G1 (осциллограмма D) существует в течение времени, пока сигналы на обоих его входах имеют высокий уровень.
Рисунок 2. | Формы сигналов в схеме генератора, измеренные осциллографом реального времени с полосой пропускания 400 МГц. A – «ВХОД», B – выход IC3 (фиксированная задержка), C – выход IC2 (переменная задержка), D – «ВЫХОД». |
Рисунок 3. | 5-наносекундный выходной импульс при R = 390 Ом имеет хорошую форму и аккуратные фронты. Звон на плоской вершине импульса в пределах 8% обусловлен индуктивностью проводников, идущих к элементу G1, и неидеальностью кабеля, соединяющего щуп с осциллографом. |
Полученный при R = 390 Ом выходной импульс, показанный на Рисунке 3, имеет амплитуду 5 В и длительность, измеренную по уровню 50% – 5 нс. Импульс имеет хорошую форму и аккуратные фронты. Выброс переднего фронта, составляющий примерно 8%, обусловлен индуктивностью проводников, идущих к элементу G1, и неидеальностью кабеля, соединяющего щуп с осциллографом. На Рисунке 4 показан самый узкий импульс, при котором сохраняется полная амплитуда 5 В. Ширина импульса, измерявшаяся в стробоскопическом режиме в полосе частот 3.9 ГГц, равна 1 нс по уровню амплитуды 50% и 1.7 нс у основания. Импульс может быть еще короче, если допустимо, что его амплитуда будет меньше 5 В.
Рисунок 4. | Наименьшая ширина импульса равна 1 нс по уровню половинной амплитуды и 1.7 нс по основанию. Измерения выполнялись в полосе частот 3.9 ГГц. |
Рисунок 5. | Импульс с неполной амплитудой 3.3 В имеет длительность 700 пс, а ширину у основания – 1.25 нс. Зернистость осциллограммы обусловлена артефактами стробоскопического режима осциллографа. |
Минимально достижимая ширина импульса ограничена временем нарастания микросхемы G1. Импульс с неполной амплитудой 3.3 В имеет длительность 700 пс, а ширину у основания – 1.25 нс (Рисунок 5). Время нарастания импульса на Рисунке 6, измеренное в стробоскопическом режиме в полосе частот 3.9 ГГц, равно 520 пс. Время спада равно времени нарастания. Фронт импульса имеет четко определенную форму и свободен от артефактов.
Рисунок 6. | Детальное изображение переднего фронта, измеренного в полосе частот 3.9 ГГц стробоскопическим осциллографом с временем нарастания 90 пс, показывает, что его длительность равна 520 пс. Задний фронт имеет такую же длительность. Зернистость осциллограммы обусловлена артефактами стробоскопического режима осциллографа. |
Материалы по теме
Перевод: AlexAAN по заказу РадиоЛоцман
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
Представляем очень простой генератор наносекундных импульсов, который может быть использован для изучения явлений, связанных с измерениями электрических импульсов во время тестирования отклика высокоскоростных цепей — усилители осциллографа, кабели антенн и т. д.
Схема генератора импульсов нс
Основным препятствием для тестирования этих генераторов (их английское сокращение — TDR) обычно является отсутствие доступа или владения заводским измерительным прибором, ведь такое оборудование не является дешевым и доступным. Но сделав действительно небольшие затраты, можно самим построить такую измерительную систему. Так что для неё нужно? Разумеется, осциллограф, предпочтительно цифровой (хотя и не обязательно) с минимальной полосой пропускания 60 МГц (500 Мс -1 ГГц / с) и источником импульсов со временем нарастания не более 1 нс и длительностью 1-2 нс. Полагаем у каждого радиолюбителя есть такой осциллограф, поэтому остается вопрос: как сделать такой генератор импульсов?
Описание устройства
Вся схема основана на двух блоках. Первый блок представляет собой DC-DC преобразователь и он построен с использованием микросхемы LT1073, второй блок представляет собой генератора на базе транзистора 2N2369A от Моторола. Инвертор объекта подает переменное напряжение, которое затем повышается в цепи умножителя диодного напряжения (диоды D1-D3) до значения 90 В. Затем с этим напряжением работает импульсная генераторная схема.
Микросхема LTC1073 используется для получения напряжения + 90 В. Если найти её проблема или купить слишком дорого — эта часть схемы может быть заменена другим преобразователем, например построенным на ne555 или mc34096a.
Схема питается через резистора 1MOM (R5), который подает напряжение непосредственно на транзистор и конденсатор 2PF (C2) — когда он заряжается до напряжения около 50 В (UCE для 2n2369 составляет около 40 В) вызывается краткий пробой перехода К-Э транзистора T1 и возникает импульс (явление лавинного пробоя).
Этот повторяется каждые 10 мкс. Теперь, обратите внимание на номинал транзистора — 2N2369A, не каждый транзистор тут будет работать, многие другие транзисторы просто не хотели функционировать.
Выходное сопротивление точно настраивается на 50 Ом с помощью резистора эмиттера. Если кто-то хочет протестировать кабели с разными импедансами, надо подобрать значение резисторов R2, R3 для сопротивления кабеля (например, 75 Ом (2×150)).
Источник питания и корпус
Печатная плата генератора очень маленькая, на 42×18 мм. Сама схема может питаться напряжением от 1,5 до 3 В, в данном случае использовалась литиевая батарея CR2450. Весь генератор потребляет 5 мА и используя устройство в течение года, напряжение батареи остается на уровне 3 В. Конечно, если кто-то будет использовать его интенсивно, батарея быстро перестанет быстро обеспечивать требуемое напряжение.
Как видите на рисунках ниже, собранное устройство действительно мало и имеет общий размер 12x4x2,5 см. На рисунке показан модуль генератора, переключатель, светодиод, обозначающий включение источника питания и гнездо с батареей CR2450.
Измерения наносекундных импульсов
Ниже приведены результаты измерения. Первое измерение показывает генерируемый импульс, измерение времени нарастания около 13,3 нс, ограниченной ширины полосы осциллографа (200 МГц), общая длительность импульса составляет около 2,5 нс. Генератор, измеренный на осциллографе с полосой пропускания 2 ГГц (10 GS), показал Tr = 280 pS и общую длительность импульса 1 нс.
Другим является измерение открытого коаксиального кабеля с коэффициентом укорочения 0,66 (коэффициент укорочения — это значение, если электромагнитная волна «работает» медленнее в данной среде по отношению к вакууму) кабель RG 178. Общее измеренное время составляет 17 нс, чтобы рассчитать время распространения, это значение должно быть разделено на 2 (время для достижения отражения и возврата сигнала), которое мы получаем, так что 8,5 нс, теперь этого достаточно, чтобы умножить на скорость света (точнее, электромагнитную волну) и по коэффициенту укорочения кабеля, то есть 0,66. После расчетов получаем результат длины кабеля, равный 1,67 м (фактическая длина кабеля составляет 1,7 м), поэтому ошибка измерения составляет около 2%.
Последнее измерение касается установки антенного кабеля. Аналогично здесь отражение в конце и волнистости в середине измерения. Рассчитанные расстояния представляют собой соответственно разъем на расстоянии 2,2 м и молниеотвод на расстоянии 5,5 м и, наконец, антенну на расстоянии 9,2 м (эти измерения также точны до 3%).
Если отражение выше оси, это означает что кабель разорван, то есть импеданс >50 Ом (относительно выходного импеданса генератора), если под осью — короткое замыкание или импеданс
Классы МПК: | H03K3/53 с использованием элементов, аккумулирующих энергию и разряжаемых через нагрузку с помощью переключающих устройств, управляемых внешним сигналом, и не содержащих цепи положительной обратной связи |
Автор(ы): | Грехов И.В. , Ефанов В.М. , Кардо-Сысоев А.Ф. , Коротков С.В. |
Патентообладатель(и): | Физико-технический институт им.А.Ф.Иоффе РАН |
Приоритеты: |