Меню Рубрики

S это площадь или периметр

Содержание

Периметр — это сумма длин всех сторон многоугольника.

  • Для вычисления периметра геометрических фигур используются специальные формулы, где периметр обозначается буквой «P». Название фигуры рекомендуется писать маленькими буквами под знаком «P», чтобы знать чей периметр ты находишь.
  • Периметр измеряется в единицах длины: мм, см, м, км и т.д.

Отличительные особенности прямоугольника

  • Прямоугольник – это четырехугольник.
  • Все параллельные стороны равны
  • Все углы = 90º.
  • Например в повседневной жизни прямоугольник может встречаться в виде – книги, монитора, крышки от стола или двери.

Как вычислить периметр прямоугольника

Существует 2 способа его нахождения:

  • 1 способ. Складываем все стороны. P = a + а + b + b
  • 2 способ. Сложить ширину и длину, и умножить на 2. P = (a + b) · 2. ИЛИ Р = 2 · а + 2 · b. Стороны прямоугольника, которые лежат друг против друга (противолежащие), называются длиной и шириной.

«a» — длина прямоугольника, более длинная пара его сторон.

«b» — ширина прямоугольника, более короткая пара его сторон.

Пример задачи на подсчет периметра прямоугольника:

Вычислите периметр прямоугольника, есть его ширина равна 3 см., а длина — 6.

Запомни формулы вычисления периметра прямоугольника!

Полупериметр — это сумма одной длины и одной ширины.

  • Полупериметр прямоугольника — когда выполняешь первое действие в скобках – (a+b).
  • Чтобы из полупериметра получить периметр, нужно его увеличить в 2 раза, т.е. умножить на 2.

Как найти площадь прямоугольника

Формула площади прямоугольника S= a*b

Если в условии известна длина одной стороны и длина диагонали, то площадь найти можно, используя в таких задачах, теорему Пифагора, она позволяет найти длину стороны прямоугольного треугольника если известны длины двух других сторон.

  • Теорема Пифагора: a 2 + b 2 = c 2 , где a и b – стороны треугольника, а с – гипотенуза, самая длинная сторона.
Читайте также:  Буры для перфоратора sds plus размеры

Помни!

  1. Все квадраты – прямоугольники, но не все прямоугольники – квадраты. Так как:
    • Прямоугольник — это четырехугольник со всеми прямыми углами.
    • Квадрат — прямоугольник, у которого все стороны равны.
    • Если ты находишь площадь, ответ всегда будет в квадратных единицах (мм 2 , см 2 , м 2 , км 2 и т.д.)

    Пери́метр (др. -греч. περίμετρον — окружность, др. -греч. περιμετρέο — измеряю вокруг) — общая длина границы фигуры (чаще всего на плоскости). Имеет ту же размерность величин, что и длина. Иногда периметром называют границу геометрической фигуры.

    Пло́щадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры [1], неформально говоря, показывающая размер этой фигуры. Исторически вычисление площади называлось квадратурой. Фигура, имеющая площадь, называется квадрируемой. Конкретное значение площади для простых фигур однозначно вытекает из предъявляемых к этому понятию практически важных требований (см. ниже). Фигуры с одинаковой площадью называются равновеликими.

    Периметр фигуры обладает только одним параметром — протяжённостью, или длиной, выраженной в единицах длины: метр, ярд, аршин, локоть. Или производных от них: километр, сантиметр, дециметр.

    Площадь фигуры обладает двумя параметрами — например, длиной и шириной, или радиусом и коэффициентом Пи, в зависимости от формы. Величина площади выражается в единицах в квадрате: квадратных метрах, гектарах, квадратных милях

    Периметр и его определение

    Периметром принято называть протяжённость границы плоской фигуры, состоящей из прямых отрезков, где начало каждого последующего примыкает к окончанию предыдущего.

    Строго говоря, окружность тоже обладает периметром, но для криволинейных границ принято говорить о длине окружности, или длине дуги

    Для определения длины периметра, необходимо измерить, или вычислить, длину каждой стороны фигуры, а затем суммировать полученные числа.

    Площадь фигуры и её определение

    Площадь простейших геометрических фигур определяется по формулам.

    Читайте также:  Гардеробная в прихожую внутреннее наполнение

    Площадь прямоугольника равна произведению длин сторон.
    Площадь круга равна произведению квадрата радиуса на число Пи=3,1415
    Свои формулы есть для треугольника, сектора, трапеции, параллелограмма.

    Площадь сложных криволинейных фигур вычисляется интегралом. Взятие интеграла формулы, описывающей границу фигуры, даст в результате площадь. В этом и есть геометрический смысл интеграла — он вычисляет площадь, ограниченную графиком функции на заданном участке.

    Сложная фигура, lkz которой нет общей формулы, для определения площади мысленно разбивается на простейшие фигуры. Площади простых фигур вычисляются и затем суммируются.

    Периметр и площадь геометрической фигуры связаны и один параметр всегда может быть вычислен из другого с минимальными дополнительными данными.

    Площадь и периметр – две численные характеристики, часто используемые в геометрии. Для их вычисления применяют одни и те же параметры, но смысл конечных величин имеет принципиальные различия. На упаковке многих товаров указывается площадь или размеры сторон в виде A х B (если речь идет о товаре, одна из сторон которого имеет форму прямоугольника).

    Определение

    Площадь – величина, характеризующая размер поверхности, которую занимает геометрическая фигура.

    Периметр – размер границ (контура) геометрической фигуры.

    Понятия применимы для каждой геометрической фигуры и выражаются в различных единицах. Расчет периметра и площади определяется единицами измерения параметров, используемых для их вычисления: длин сторон, диаметра, высоты. В геометрии указанные параметры чаще всего измеряются в мм, см, м.

    Сравнение

    Периметр обозначается заглавной буквой P, используется при измерении многоугольников и определяется как сумма длин его сторон. Площадь обозначается буквой S и может быть использована как численная характеристика поверхности, имеющей различный контур, в том числе искривленный. Понятие «квадратура» частично отражает смысл площади, в основе которой положено измерение квадрата поверхности.

    Читайте также:  Выпечка с яблоками рецепты от бабушки

    Простейший случай – квадрат. Длины его сторон равны, поэтому для вычисления периметра достаточно умножить одну сторону на 4. Формула выглядит так:

    Р = a + a + a + a = a х 4, где а – сторона квадрата.

    Для вычисления площади квадрата используется другая формула:

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *