Меню Рубрики

Виды энергии преобразование получение

Содержание

Читайте также:

  1. Алгоритмы и способы их описания
  2. Аппаратура и способы стерилизации воздуха
  3. Базовые способы записи
  4. Безынерционные нелинейные преобразования.
  5. Билет № 53: Специфика кризисных ситуаций для российских предпринимательских структур. Пути и способы выхода из кризисных ситуаций.
  6. Биологические способы -переливание кровисвежей, с малыми сроками хранения, плазмы, тромбоцитной массы, фибриногена, ингибиторов протеолиза- контрикала, гордокса.
  7. В любом случает существуют определенные способы реализации власти, которые воплощаются в конкретных элементах распорядительной деятельности.
  8. Вентиляция производственных помещений, ее виды, назначение.
  9. Виды лабораторных животных,способы их заражения.
  10. Виды средних и способы их вычисления
  11. Виды, порядок наложения и снятия дисциплинарных взысканий
  12. Виды, типы и уровни мотивации

Энергия, от греческого слова energeia – деятельность или действие, – общая мера различных видов движения и взаимодействия.

Энергия – это количественная мера действия и взаимодействия всех видов материи.

Виды энергии: механическая, электрическая, тепловая, магнитная, атомная.

Кинетическая энергия – результат изменения состояния движения материальных тел.

Потенциальная энергия – результат изменения положения частей данной системы.

Механическая энергия — это энергия, связанная с движением объекта или его положением, способность совершать механическую работу.

Электроэнергия энергия – одна из совершенных видов энергии.

Ее широкое применение обусловленно следующими факторами:

· Получение в больших количествах вблизи месторождения ресурсов и водных источнков;

· Возможность транспортировки на дальние расстояния с относительно небольшими потерями;

· Способность трансформации в другие виды энергии: механическую, химическую, тепловую, световую;

· Отсутствие загрязнения окружающей среды;

· Внедрением на основе электроэнергии принципиально новых прогрессивных технологических процессов с высокой степенью автоматизации.

В последнее время, в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерным географическим распределением, становится целесообразным вырабатывать электроэнергию используя ветроэнергетические установки, солнечные батареи, малые газогенераторы.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Преобразование первичной энергии во вторичную осуществляется на станциях:

· На тепловой электрической станции ТЭС – тепловая;

· Гидроэлектростанции ГЭС – механическая (энергия движения воды);

· Гидроаккумулирующая станция ГАЭС – механическая (энергия движения предварительно наполненной в искусственном водоеме воды);

· Атомная электростанция АЭС – атомная (энергия ядерного топлива);

· Приливной электростанции ПЭС – приливов.

В РБ более 95% энергии вырабатывается на ТЭС, которые по назначению делятся на два типа:

1. Конденсационные тепловые электростанции КЭС, преднозначены для выработки только электрической энергии;

2. Теплоэлектроцентрали ТЭЦ, на которых осуществляется комбинированное производство электрической и тепловой энергии.

Способы получения и преобразования энергии.

Механическая энергия преобразуется в тепловую – трением, в химическую – путем разрушения структуры вещества, сжатия, в электрическую – путем изменения электромагнитного поля генератора.

Тепловая энергия преобразуется в химическую, в кинетическую энергию движения, а эта – в механическую (турбина), в электрическую (термо э.д.с.)

Химическая энергия может быть преобразована в механическую (взрыв), в тепловую (тепло реакции), в электрическую (батарейки).

Электрическая энергия может быть преобразована в механическую (электромотор), в химическую (электролиз), в электромагнитную (электромагнит).

Электромагнитная энергия – энергия Солнца – в тепловую (нагрев воды), в электрическую (фотоэффект → гелиоэнергетика), в механическую (звонок телефона).

Ядерная энергия → в химическую, тепловую, механическую (взрыв), регулируемое деление (реактор) → химическая + тепловая.

ТЭС включает комплект оборудования, в котором внутренняя химическая энергия топлива превращается в тепловую энергию воды и пара, преобразующуюся в ме-ханическую энергию вращения, которая и вырабатывает электрическую энергию.

Поступающие со склада (С) в парогенератор(ПГ) топливо при сжигании выделяет тепловую энергию, которая нагревая подведенную с водозабора(ВЗ)воду, преобразует ее в энергию водяного пара с температурой 550. В турбине энергия водяного пара превращается в механическую энергию вращения, передающуюся на генератор(Г), который превращает ее в электрическую. В конденсаторе пара(К) отработанный пар с температурой 123-125отдает скрытую теплоту парообразования охлаждающей его воде и с помощью циркулярного насоса(Н) в виде конденсатора вновь подается в котел-паронагнетатель.

Схема ТЭЦ отличается от ТЭС тем, что взамен конденсатора устанавливается теплообменник, где пар при значительном давлении нагревает воду подаваемую в главные тепловые магистрали.

АЭС

Схема АЭС зависят от типа реактора; вида теплоносителя; состава оборудования и могут быть одно-, двух-, и трехконтурными.

Пар отрабатывается непосредственно в реакторе и поступает в паровую турбину. Отработанный пар конденсируются в конденсаторе, и конденсат подается насосом в реактор. Схема проста, экономична. Однако пар на выходе из реактора становится радиоактивным, что предъявляет повышенные требования к биологической защите и затрудняет проведение контроля и ремонта оборудования.

4-конденсатор водяных паров;

Отличие ТЭС от АЭС состоит в том, что источником теплоты на ТЭС является паровой котел, в котором сжигается органическое топливо; на АЭС – ядерный реактор, теплота в котором выделяется делением ядерного топлива, обладающей высокой теплотворной способностью.

Читайте также:  Газоблок с облицовкой цена

Транспортирование тепловой и электрической энергии.

Транспортирование тепловой энергии.

Основными потребителями тепловой энергии являются промышленные предприятиями и жилищно-коммунальное хозяйство.

Системой теплоснабжения называется комплекс устройств по выроботке, транспортировке и использования теплоты.

Снабжение тепловой энергии потребителей(система отопления, вентиляция, горячего водоснабжения и технологических процессов) состоит из 3-х взаимосвязанных процессов: передачи теплоты теплоносителю, транспортировки теплоносителя и использования теплового потенциала теплоносителя. Системы теплоснабжения могут быть децентрализованными(местными) и централизованными.

Децентрализованные системы теплоснабжения – это системы, в которых 3 основных звена объединены и находятся в одном или смежных помещениях. При этом получение теплоты и передача ее воздуха помещения объединены в одном устройстве и расположены в отапливаемых помещениях.

Централизованные системы теплоснабжения – это системы, в которых от одного источника теплоты подается теплота для многих зданий, кварталов, районов.

Транспортирование тепловой энергии производится тепловыми сетями.

Основными элементами тепловых сетей являются трубопровод, изоляционная конструкция, несущая конструкция.

Прокладка трубопроводов производится надземными и подземными способами.

Транспортирование электрической энергии.

Передача электроэнергии от предприятий, вырабатывающих электроэнергию, непосредственным потребителям осуществляется с помощью электрических сетей, представляющих собой совокупность подстанций(повысительных и понизительных), распределительных устройств и соединяющих их электрических линий(воздушных или кабельных), размещенных на территории района, населенного пункта, потребителя электрической энергии.

К основному оборудованию, производящему и распределяющему электроэнергию, относится:

· Синхронные генераторы, вырабатывающие электроэнергию(на ТЭС – турбогенераторы);

· Сборные шины, принимающие электроэнергию от генераторов и распределяющие ее потребителям;

· Коммутационные аппараты-выключатели, включающие и отключающие цепи в нормальных и аварийных условиях, и разъединители, снимающие напряжения с обеспеченных частей электроустановок и создающие видимый разрыв цепи;

· Электроприемники собственных нужд(насосы, вентиляторы, аварийное электрическое освещение и т.д.).

Вспомогательное оборудование предназначено для выполнения функций измерения, сигнализации, защиты и автоматики и т.д.

Дата добавления: 2014-01-04 ; Просмотров: 7339 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Энергия и ее виды. Причины широкого использования электроэнергии. Тепловые, атомные, гидроэлектростанции и принцип их работы. Нетрадиционные и возобновляемые источники энергии. Прямое преобразование солнечной энергии. Геотермальная энергия Земли.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 12.11.2014
Размер файла 30,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Виды, способы получения, преобразования и использования энергии

Энергия и ее виды

Согласно современным представлениям энергия – это общая количественная мера различных форм движения материи. Имеются качественно разные физические формы движения материи, которые способны превращаться одна в другую. В середине ХХ в. было установлено, что все формы движения превращаются друг в друга в строго определенных отношениях. Именно это обстоятельство и позволило ввести понятие энергии как общей меры движения материи.

Тепловые и атомные электрические станции (ТЭС и АЭС), гидроэлектростанции

Одним из наиболее совершенных видов энергии является электроэнергия. Ее широкое использование обусловлено следующими факторами:

-возможностью выработки электроэнергии в больших количествах вблизи месторождений и водных источников;

-возможностью транспортировки на дальние расстояния с относительно небольшими потерями;

-возможностью трансформации электроэнергии в другие виды энергии: механическую, химическую, тепловую, световую;

-отсутствием загрязнения окружающей среды;

-возможностью применения на основе электроэнергии новых прогрессивных технологических процессов.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания. Электрическая и тепловая энергия производится на:

тепловых электрических станциях на органическом топливе (ТЭС) с использованием в турбинах водяного пара (паротурбинные установки – ПТУ), продуктов сгорания (газотурбинные установки – ГТУ), их комбинаций (парогазовые установки – ПГУ);

гидравлических электрических станциях (ГЭС), использующих энергию падающего потока воды, течения, прилива;

атомных электрических станциях (АЭС), использующих энергию ядерного распада.

Тепловые электрические станции (ТЭС) можно разделить на конденсационные электрические станции (КЭС), производящие только электроэнергию (они также называются ГРЭС – государственные районные электростанции), и теплоэлектроцентрали (ТЭЦ) – электрические станции с комбинированной выработкой электрической и тепловой энергии.

Производство электроэнергии на ТЭС

энергия электростанция нетрадиционный

Современные тепловые электростанции имеют преимущественно блочную структуру. ТЭС с блочной структурой составляется из отдельных энергоблоков. В состав каждого энергоблока входят основные агрегаты – турбинный и котельный и связанное сними вспомогательное оборудование. Турбина вместе с котлом, питающим ее паром, образует моноблок.

Уголь поступает в систему подготовки топлива, в которой дробится, подсушивается и размалывается, превращаясь в угольную пыль. В таком виде топливо поступает в горелки, в которых смешивается с подогретым воздухом. Если используется жидкое топливо (мазут), то оно подогревается до 100 – 140 С и распыляется в форсунках.

Топливо сгорает в топочной камере парового котла с выделением теплоты. Эта теплота передается рабочему телу – воде, превращая ее сначала в насыщенный пар, а затем перегретый (имеющий температуру более высокую, чем температура кипения жидкости при данном давлении), обладающий большой энергией.

Читайте также:  Длина подоконной доски пвх

Паровой котел представляет собой систему теплообменников (поверхностей нагрева), в которых производится в требуемом количестве пар заданных параметров из непрерывно поступающей воды за счет теплоты, получаемой при сжигании органического топлива. Температура в зоне активного горения в топочной камере может достигать 1500 – 1800С в зависимости от вида сжигаемого топлива и режима горения.

Энергия пара приводит во вращение ротор паровой турбины. В процессе расширения рабочего тела (пара) в соплах потенциальная энергия переходит в кинетическую, что сопровождается увеличением скорости потока. Расширяясь в ступенях турбины, пар совершает работу. Механическая энергия вращения вала турбины передается электрогенератору, вырабатывающему электроэнергию, которая после повышения напряжения в трансформаторе направляется по линиям электропередачи к потребителю.

Отработанный в турбине пар подается в конденсатор, где конденсируется, отдавая тепло охлаждающей воде (пруды-охладители или естественные водоемы).

Конденсатор – теплообменный аппарат, предназначенный для превращения отработавшего в турбине пара в жидкое состояние – конденсат. Образующийся конденсат откачивается из конденсатора и после ряда технологических операций поступает в котел. Цикл замыкается. Основным показателем энергетической эффективности электростанции является коэффициент полезного действия (КПД) по отпуску электрической энергии, называемый абсолютным электрическим коэффициентом полезного действия электростанции. Он определяется отношением отпущенной (выработанной) электроэнергии к затраченной энергии (теплоте сожженного топлива) и составляет 35 – 40%.

Теплоэлектроцентрали отпускают электроэнергию потребителю, так же как и КЭС (конденсационные электрические станции), и кроме этого тепловую энергию в виде пара и горячей воды для технологических нужд производства и горячей воды для коммунально-бытового потребления (отопление, горячее водоснабжение). При такой комбинированной выработке тепловой и электрической энергии в тепловую сеть отдается главным образом теплота отработавшего в турбинах пара (или газа), что приводит к снижению расхода топлива на 25 – 30% по с равнению с раздельной выработкой электроэнергии на КЭС и теплоты в районных котельных. Поскольку для производственных и бытовых нужд требуется пар или вода в относительно широком диапазоне температур и давлений, на ТЭЦ применяются теплофикационные турбины различных типов в зависимости от характера потребления теплоты.

Районные котельные предназначены для централизованного теплоснабжения промышленности и жилищно-коммунального хозяйства, а также для покрытия пиковых тепловых нагрузок в теплофикационных системах. Сооружение их требует меньших капиталовложений и может быть проведено в более короткие сроки, чем сооружение ТЭЦ той же тепловой мощности. Поэтому во многих случаях теплофикацию районов начинают со строительства районных котельных. До ввода в работу ТЭЦ эти котельные являются основным источником теплоснабжения района. После ввода ТЭЦ они используются в качестве пиковых. Котельные сооружают на площадках ТЭЦ или в районах теплопотребления. В них устанавливают водогрейные котлы или паровые котлы низкого давления (1,2 – 2,4 Мпа). Выбор типа котлов в котельной производится на основе технико-экономических расчетов.

Атомные электрические станции

Тепловые схемы атомных электростанций зависят от типа реактора, вида теплоносителя, состава оборудования. Тепловые схемы могут быть одно-, двух- и трехконтурными.

В одноконтурных схемах пар вырабатывается непосредственно в реакторе. Полученная пароводяная смесь подается в барабан-сепаратор, отсепарированный насыщенный пар поступает в паровую турбину. Отработанный в турбине пар конденсируется, и конденсат циркуляционным насосом подается в реактор. Одноконтурная схема наиболее проста в конструктивном отношении и достаточно экономична. Однако рабочее тело на выходе из реактора становится радиоактивным, что предъявляет повышенные требования к биологической защите и затрудняет проведение контроля и ремонта оборудования.

В двухконтурных схемах существуют два самостоятельных контура. Контур теплоносителя – первый; контур рабочего тела – второй. Общее оборудование обоих контуров – парогенератор. Нагретый в реакторе теплоноситель поступает в парогенератор, где отдает свою теплоту рабочему телу и при помощи главного циркуляционного насоса возвращается в реактор. Полученный в парогенераторе пар подается в турбину, совершает в ней работу, конденсируется, конденсат питательным насосом подается в парогенератор. Наличие парогенератора хотя и усложняет установку и уменьшает ее экономичность, но препятствует появлению радиоактивности во втором контуре.

В трехконтурной схеме теплоносителями первого контура служат жидкие металлы, например натрий. Радиоактивный натрий первого контура из реактора направляется в теплообменник, где отдает теплоту натрию промежуточного контура, и циркуляционным насосом возвращается в реактор. Давление натрия в промежуточном контуре выше, чем в первом, для исключения утечек радиоактивного натрия. Натрий промежуточного контура отдает теплоту в парогенераторе рабочему телу (воде) третьего контура. Образующийся в парогенераторе пар поступает в турбину, совершает работу, конденсируется и питательным насосом подается в парогенератор. Трехконтурная схема требует больших затрат, но обеспечивает безопасную эксплуатацию реактора.

Работа АЭС по технологическим условиям отличается от работы тепловой электростанции. Основным различием является то, что роль источника теплоты на тепловой электростанции играет паровой котел, в котором сжигается органическое топливо, а на АЭС – ядерный реактор, теплота в котором выделяется в результате деления ядерного топлива. Ядерное топливо обладает высокой теплотворной способностью (в миллионы раз выше, чем органическое). В процессе работы ядерного реактора образуется большое количество радиоактивных веществ в топливе, конструкционных материалах, теплоносителе. Поэтому АЭС является потенциальным источником радиационной опасности для обслуживающего персонала, а также для окружающего населения, что повышает требования к надежности и безопасности ее эксплуатации.

Читайте также:  Ерш для чистки котлов твердотопливных

Энергия играет важную роль не только для жизни на Земле, но и в любом изменении во Вселенной. Преобразование энергии происходит постоянно изменяя свою форму.

Формы её различны и могут быть:

  • химическая
  • электромагнитная
  • световая
  • ядерная
  • гравитационная
  • механическая
  • внутренняя или связи частиц.

Химическая

Например, при горении компонентов бензиновой смеси в автомобиле незначительная часть физической величины покоя превращается в тепло, то есть в движение частиц. С помощью поршней тепло превращается в кинетическую форму движения автомобиля.

Подобным образом горение (окисление) угля, бензина, дерева и других видов топлива представляет собой главный способ преобразования энергии из вещества в тепло и свет. Однако, это весьма неэффективный способ, потому что при этом освобождается менее одной миллиардной доли физической величины мощности покоя вещества.

Например, из одного килограмма угля освобождается около 5 000 ккал тепла, что составляет приблизительно 5 кВт/ч энергии.

Мы знаем, что один кг материи (включая и уголь) содержит энергию 25 миллиардов кВт/ч.

Таким образом, при горении используется меньше чем одна миллиардная доля, а всё остальное остается в пепле и дыме. Итак, мы видим, что горение, которое является в настоящее время главным источником энергии для человечества, – невероятно неэффективный способ получения ее из вещества.

Основной химической реакцией во всех живых организмах является окисление. Организм человека в процессе дыхания получает из воздуха кислород, в процессе питания получает углерод и водород, связанные в органических молекулах (в сахаре, белках и т.д.). При окислении углерода и водорода происходит преобразование энергии необходимое для всех жизненно важных процессов в организме.

Каждая химическая реакция означает перегруппировку атомов в молекулах. Она осуществляется при участии электромагнитного взаимодействия между атомами.

Электромагнитная

Имеется две составляющие электрическая и магнитная которые взаимодействуют и порождают друг друга. В генераторе переменного тока или динамо-машине движение превращается в электрическое движущееся поле.

Электрическая составляющая с помощью различных приборов может преобразовывать энергию в тепловую, световую, механическую, электромагнитной волны распространяющийся по пространству и т.д.

Световая

В лампах рефлекторов электричество трансформируется в движение фотонов, в свет, а тот, в свою очередь, поглощается поверхностью дороги и превращается в тепло, то есть в кинетическую форму молекул.

Вселенная состоит из частиц и фотонов представляющих собой кванты световой волны или электромагнитного излучения. Это основные элементарные частицы . Между ними беспрестанно происходит обмен энергией. Например, вещество постоянно излучает фотоны и одновременно поглощает их. Другие процессы где происходит преобразование энергии между этими составными Вселенной являются аннигиляция и материализация.

Это важное свойство называется законом сохранения энергии.

Ядерное взаимодействие

Ядерное взаимодействие гораздо сильнее электромагнитного. Оно способно освобождать из материи энергию в несколько миллионов раз большую, чем электромагнитное взаимодействие. В атомной электростанции с помощью ядерных сил получают примерно тысячную долю энергии покоя урана.

Звезды способны сделать это еще лучше человека. При превращении водорода в железо, которое происходит в недрах тяжелых звезд, освобождается почти один процент от энергетической возможности водорода.

Солнце освобождает энергию подобным образом, что и водородная бомба за счет синтеза легких элементов в тяжелые. Различие состоит в том, что Солнце это делает гораздо более совершенно, чисто, исключительно ради сохранения жизни, а не для ее уничтожения. Поэтому светимость Солнца и обеспечивает жизнь на Земле.

Электромагнитные силы (соединение электрона с ядром или соединение молекул в кристаллы) всегда очень неэффективны.

Гравитационная

И гравитационная сила способна эффективно преобразовывать энергию, но лишь в космических телах, имеющих гигантскую массу, например, в массивных звездах, компактных ядрах галактик и пр. Там гравитация способна выжать из материи почти половину из возможного.

Земля — сравнительно малое тело, поэтому на ней невозможно получить большую величину с помощью гравитации.

Механическая

Самая объяснимая, состоящая из кинетической и потенциальной мера способности совершать работу.

Само механическое движение того или иного объекта может способствовать преобразованию энергии из одного вида в другой. В природе явление этого преобразования встречается везде.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *