Меню Рубрики

Закон ома для тока в металлах

Современным людям (даже не особо разбирающимся в физике) закон Ома кажется простым: чем больше напряжение в проводнике, тем сила тока выше, чем больше сопротивление проводника, тем она ниже. Однако в первой половине XIX в. никто понятия не имел, из чего «сделан» ток, что влияет на его скорость, силу и т. д. До 1840-х ученые полагали, будто проводник никоим образом не участвует в движении тока. Немецкий физик Георг Симон Ом (1789—1854) был первым, кто в этом усомнился и потому решил измерить силу тока.

Поскольку специальных измерительных приборов тогда попросту не было, Ом решил доработать «крутильные весы» — изобретение француза Ш.-О. Кулона, которое представляло собой подвешенное на нити коромысло с двумя грузами по краям. Результатом упорного руда стал прибор, идеально подходящий для измерений тока, и Ом наконец-то начал свои эксперименты.

Для этого он взял термоэлемент — устройство, преобразующее тепловую энергию в электрическую, — в составе медного и висмутового брусков, соединенных между собой. Над термоэлементом на золотой проволоке была подвешена магнитная стрелка, накрытая стеклянным колпаком, защищавшим ее от движения воздуха. Когда место соединения металлических брусков нагревалось, по цепи начинал идти электрический ток — более стабильный, чем ток, который генерировался гальванической батареей и испытывал постоянные скачки напряжения. Под действием тока стрелка отклонялась, но Ом, подкручивая проволоку, возвращал ее в исходную позицию и замерял транспортиром угол поворота. В зависимости от величины этого угла и определялась сила тока.

Ученый поставил еще несколько аналогичных опытов с другими проводниками и в результате убедился: сила тока возрастает пропорционально увеличению напряжения («возбуждающей силы», то есть работы электрического поля, связанной с переносом заряда). Ом даже составил таблицы таких соответствий, а затем попробовал варьировать протяженность проводника и выявил, что с увеличением длины растет сопротивление цепи и уменьшается сила тока.

Далее Ом сравнил поведение тока в проводниках, находящихся в огне и в воде со льдом, и заключил: чем жарче, тем сопротивление больше; чем холоднее, тем сопротивление меньше. Кроме того, ученый ввел понятия электропроводности (характеристики вещества, противоположной сопротивлению) и электродвижущей силы — способности источника тока поддерживать определенное напряжение на входе и на выходе из цепи. Открытия Ома сыграли такую значимую роль в развитии физики, что немецкий ученый О. Ломмель назвал их ярким факелом, который озарил ранее темную сферу электричества.

В 1879 г. американский ученый Э. Холл обнаружил любопытный эффект — возникновение электрического напряжения на нижней и верхней кромках тонкой золотой пластины, установленной вертикально между двумя магнитами. Это можно было объяснить только тем, что магнитный поток «разгоняет» на края пластины некие крошечные частицы, которые несут в себе заряд. Существование таких частиц, входящих в состав атомов, было подтверждено опытами английского физика Дж. Дж. Томсона 18 лет спустя, и впоследствии носители заряда получили название электронов. Перед учеными встала задача объяснить явление сопротивления с позиции атомного строения вещества, и решить ее вызвался немец — Пауль Друде (1863—1906).

Читайте также:  Акварель белые ночи отзывы

Согласно его теории, структура металлического проводника представляет собой решетку из атомов. Каждый атом окружен внешней оболочкой из свободных электронов, которыми можно обмениваться с «соседями». Некоторые из этих электронов отправляются в вольное плавание и превращаются в нечто похожее на идеальный газ. Когда в проводнике возникает напряжение — то есть при замыкании цепи, — электроны сразу же выстраиваются и начинают упорядоченно разгоняться. Но по пути они натыкаются на кристаллическую атомную решетку и тормозят до скорости примерно 2 мм в секунду — так и возникает сопротивление. Со своей стороны, атомы от столкновений слегка раскачиваются, из-за чего проводник нагревается. Несмотря на медлительность электронов, свет в лампах зажигается сразу, поскольку при нажатии на кнопку выключателя частицы срываются с места одновременно.

Описывая свободные электроны, Друде разработал формулу, где проводимость вещества определяется концентрацией, массой, зарядом электронов и средним временем их движения между столкновениями. Эта теория смогла объяснить многие процессы, касающиеся электропроводности, и развивать ее взялся немецкий ученый Карл Рикке (1845—1915). Пропуская электрический заряд через металлы, Рикке установил, что, в отличие от жидких проводников, они не меняют своих химических свойств, то есть их молекулы не распадаются на заряженные атомы — ионы.

В 1913 г. русские ученые Л. Мандельштам и Н. Папалекси экспериментально показали, что заряженные частицы, создающие в металлах электрический ток, обладают массой. Для этого ученым понадобилась проволочная катушка и… динамики. Подключив динамики к катушке, исследователи раскрутили ее, затем резко остановили — и услышали щелчок. Тот же результат дало раскручивание в другую сторону, и ученые заключили, что из-за резкой остановки электроны отбрасывает в конец провода, словно пассажиров автобуса. Инерция становится электродвижущей силой — по проводу пробегает импульс тока. А это значит, что у частиц, так же как у людей, должна быть масса. Таким образом, Мандельштам и Папалекси подтвердили предположения Друде о возникновении тока вследствие движения частиц — носителей заряда — через кристаллическую решетку.

Через три года американцы Р. Толмен и Т. Стюарт благодаря гальванометру сумели определить массу электрона. Подсоединив прибор к катушке из 500-метрового провода, ученые раскрутили ее до скорости 500 м/с, а затем остановили. В ходе раскручивания гальванометр фиксировал появление инерции, исполняющей роль сторонней электродвижущей силы, так что после остановки катушки исследователи интегрировали (то есть суммировали) эти показания по всей длине провода — и получили формулу ЭДС. Затем, собрав все данные (ЭДС, длину провода и его сопротивление, радиус катушки, направление и скорость вращения, время остановки), они вычислили удельный заряд частицы — отношение ее элементарного заряда к массе. А попутно выяснили, что знак заряда, который несут изучаемые частицы, отрицательный. Данное открытие стало фундаментом классической теории электропроводности металлов.

Читайте также:  Вязаные люльки для малышей

Постепенно сформировалось шесть базовых положений этой теории:

  1. Чем больше в металле свободных электронов, тем выше его способность проводить ток.
  2. Все металлы имеют разное сопротивление, поскольку количество электронов в их кристаллических решетках не одинаково.
  3. По мере роста температуры внутри металла его сопротивление увеличивается.
  4. Чтобы в металле возник ток, необходима внешняя сила, которая упорядочит хаотичное движение электронов.
  5. Ток возникает в тот самый момент, когда начинается воздействие на электроны.
  6. Сила тока в металле соответствует закону Ома.

Из третьего пункта следует, что нагревание металла изнутри снижает его способность проводить ток — ведь из-за высокой температуры стройное движение электронов нарушается, и они начинают беспорядочно метаться, то и дело натыкаясь на решетку и разогревая проводник еще больше. Поэтому важно следить за тем, чтобы проводники не перегревались.

Открытие электропроводности стало первым шагом к глубокому изучению свойств металлических проводников тока, вследствие чего была создана теоретическая база для конструирования бытовой и производственной техники, которая является неотъемлемой частью современной жизни.

Понять природу электрического тока не так-то просто. Изучение этой темы позволит вам получить общие представления о постоянном электрическом токе, его законах. Вы научитесь собирать электрические цепи, выполнять измерения и простейшие расчеты.

Электрическим током считается любое упорядоченное движение заряженных частиц. В металлах такими частицами являются свободные электроны. Но, чтобы электроны заставить двигаться в определенном направлении, нужно в проводнике создать электрическое поле.

До открытия электрона в 1890 г. направление тока условно рассматривалось как направление перемещения положительного заряда. Под действием электрического поля заряды начинают двигаться в область меньшего потенциала. Движение зарядов длится до тех пор, пока потенциалы на концах проводника не станут равными. Хотя известно, что электрический ток в металлах создают свободные электроны, но до сих пор существует соглашение, в соответствии с которым за направление тока принято движение положительных зарядов.

Чтобы электрический ток не прекращался длительное время, цепь должна содержать источник тока и быть замкнутой. Благодаря источнику тока, электродвижущая сила (ЭДС) обеспечивает постоянную разность потенциалов в цепи. Таким образом, в замкнутой цепи именно ЭДС поддерживает направленное движение зарядов.

Электрический ток характеризуется физической величиной – силой тока, а работа электрического поля на участке цепи – напряжением. Зависимость между силой тока и напряжением для металлов экспериментально установил в 1826 году Г. Ом.

При наличии источника тока закон Ома для замкнутой цепи записывается с учетом ЭДС, внешнего сопротивления цепи и внутреннего сопротивления источника тока.

Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.

Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.

Читайте также:  Jindel electronic transformer 160w цена

Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.

Формула закона Ома записывается в следующем виде:

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза

И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.

Рассмотрим простейший случай применения закона Ома. Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:

Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.

Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.

Где и когда можно применять закон Ома?

Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).

Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.

Значение Закона Ома

Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении.

Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.

Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.

Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:

Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *