Для количественной оценки величины диэлектрических потерь используют понятие тангенс угла диэлектрических потерь. Введем это понятие.
В идеальном диэлектрике сдвиг фаз между напряжением и реактивной составляющей тока равен 90 градусам. В реальном диэлектрике появляется активная составляющая тока. Поэтому векторная диаграмма токов и напряжений выглядит, как показано на рисунке 34.
Рис. 34. Векторная диаграмма токов и напряжений в реальном диэлектрике.
Зная величину напряжения (U), круговую частоту (w)и емкость конденсатора (С), можно определить реактивную составляющую тока:
Тогда активная составляющая тока определится как:
Рассеиваемую мощность можно определить следующим образом:
Важно отметить, что в приведенной выше формуле величина напряжения и круговая частота не зависят от материала диэлектрика, а емкость конденсатора и тангенс угла потерь определяются материалом диэлектрика. Поскольку емкость зависит от диэлектрической проницаемости диэлектрика и геометрии конденсатора (площади обкладок и расстояния между обкладками), то рассеиваемая в материале мощность электрического поля будет пропорциональна произведению диэлектрической проницаемости на тангенс угла потерь
Произведение e´tgdназывают коэффициентом диэлектрических потерь и обозначают Kd.
При исследовании свойств материалов при помощи измерительных мостов, имеется возможность определения емкости, приложенного напряжения и круговой частоты, Следовательно, измерительные мосты могут автоматически определять активную составляющую тока и полный ток, иначе говоря, происходит автоматическое измерение тангенса угла потерь. Таким образом, tgможно использовать в качестве меры потерь энергии поля в диэлектрике.
Рассмотрим зависимости tg от температуры в полярных и неполярных диэлектриках.
С увеличением температуры концентрация носителей заряда в диэлектрике повышается. Поэтому вероятность столкновения носителя заряда со структурной единицей вещества также растет. Следовательно, при увеличении температуры потери на сквозную электропроводность возрастают (рис. 35).
В неполярных диэлектриках реализуется упругая электронная или упругая ионная поляризация. Как известно, при развитии упругих процессов потерь энергии нет, поэтому в неполярных диэлектриках основной вид потерь – потери за счет сквозной электропроводности.
2.3.2 Влияние частоты электрического поля на тангенс угла потерь неполярных диэлектриков.
С увеличением частоты электрического поля длина пробега ионов за время полупериода колебаний уменьшается, а следовательно, уменьшается запасенная ими кинетическая энергия. Кроме того, снижается вероятность столкно-
вения иона со структурными единицами материала. В силу этих причин при росте частоты электрического поля диэлектрические потери снижаются (рис. 36).
2.3.3 Влияние температуры на тангенс угла потерь в полярных диэлектриках
В полярных диэлектриках, помимо потерь на сквозную электропроводность, появляются потери на поляризацию, то есть внешнее электрическое поле совершает работу по повороту диполей. Эту работу можно оценить как произведение момента сил (М) на угол поворота (). При увеличении температуры подвижность диполей растет, и момент сил, необходимый для поворота на один и тот же угол, снижается. В то же время, рост подвижности диполей при повышении температуры ведет к увеличению угла поворота под действием постоянного момента сил (рис. 37). Таким образом, работа, совершаемая электрическим полем на поворот диполей, при росте температуры вначале увеличивается, а затем уменьшается.
Рис.37. Зависимость угла поворота диполей (), момента сил, необходимых для поворота (М) и работы по повороту диполя электрическим полем (А) от температуры.
Помимо потерь энергии поля на поляризацию, в полярных диэлектриках существуют потери на сквозную электропроводность. Важно отметить, что хотя качественно процесс электропроводности в полярных диэлектриках не отличается от процесса электропроводности в неполярных диэлектриках, количественные различия имеются. Так, в полярных диэлектриках концентрация носителей заряда, как правило, повышена, поскольку из-за полярности молекул основного материала очистка его от примесей затруднена. Суммируя потери на сквозную проводимость и поляризацию, получаем зависимость tgdот температуры показанную на рис. 38.
Рис. 38. Зависимость тангенса угла диэлектрических потерь от температуры для полярных диэлектриков.
Значения tgd, как и другие параметры диэлектриков для данных образцов материалов или участков изоляции, не являются строго постоянными, а зависят от различных внешних факторов.
Эти зависимости имеют существенное практическое значение.
Температурная зависимость tgd. При рассмотрении температурной зависимости tgd необходимо различать полярные и неполярные диэлектрики.
У неполярного диэлектрика проявляется только потери на электропроводность. Поэтому с ростом температуры tgd, а, следовательно, и диэлектрические потери, растут (Рис. 4.5, а), что обусловлено возрастанием тока проводимости в диэлектрике.
У полярных диэлектриков к потерям на электропроводность, которые больше, чем у неполярных диэлектриков, добавляются потери на поляризацию дипольных молекул.
Рис. 4.5. Зависимость тангенса угла диэлектрических потерь:
а) от температуры, б) от частоты 1 – неполярный диэлектрик, 2 – полярный диэлектрик
При низких температурах вязкость материалов высока, диполи практически не разворачиваются при приложении поля, и дипольная поляризация отсутствует, а tgd имеет низкие значения (Рис. 4.5, а).
С ростом температур до значения T1 происходит уменьшение вязкости и усиление дипольной поляризации, вследствие чего возрастает и tgd. С дальнейшим ростом температуры (участок T1 –Т2) вязкость становится настолько мала, что диполи легко поворачиваются по полю и уменьшаются затраты энергии на трение. В результате чего tgd уменьшается. Рост tgd, а следовательно, активных потерь в диэлектрике, начиная с температуры Т2 и выше, вызван увеличением тока проводимости, так как вязкость вещества уменьшается и носители тока (свободные ионы и электроны) приобретают большую скорость.
Частотная зависимость tgd . В неполярных диэлектриках существуют только потери на электропроводность, которые не зависят от частоты переменного электрического поля. Вследствие этого произведение ωtgd в выражении (4.7) должно иметь постоянное значение. Поэтому тангенс угла потерь tgd с ростом частоты уменьшается по гиперболе (график I, Рис. 4.5,б).
Рис. 4.6. Зависимость диэлектрических потерь от частоты: 1- неполярный диэлектрик, 2 – полярный диэлектрик
В полярных диэлектриках рассеиваемая мощность в основном определяется потерями на трение при ориентации дипольных молекул. Поэтому диэлектрические потери возрастают с частотой до тех пор, пока поляризация успевает следовать за изменением поля, при этом растет и tgd (график 2, Рис. 4.5,б). Когда же частота становится настолько велика что дипольные молекулы уже не успевают полностью ориентироваться в направлении поля и tgd падает, то потери Растановятся постоянными в соответствии с формулой (4.7).
Таким образом, зависимость диэлектрических потерь Раот частоты (Рис. 4.6) не соответствует частотной зависимости tgd.
3ависимость tgd от напряжения. При оценке качества изоляции большое практическое значение имеет зависимость tgd электрической изоляции от приложенного к ней напряжения.
Обычно tgd от напряжения практически не зависят, так что диэлектрические потери при повышении напряжения возрастают пропорционально U 2 . Однако иногда зависимость tgd(U) имеет весьма характерный вид, представленный на Рис. 4.7.
Рис. 4.7. Зависимость tgd от приложенного к изоляции напряжения: Uч.р – напряжение начала частичных разрядов
Из графика видно, что при значениях напряжения, превышающих Uч.р, tgd резко возрастает. Это связано с началом ионизации включений воздуха или других газов в изоляции. Ионизация в газовых включениях (мельчайших зазорах, прослойках и пузырьках газов) приводит к так называемым "частичным разрядам" в них. Частичные разряды локализуются в ограниченной части объема изоляции, т.е. не доходят до обоих электродов.
Возникновение разрядов в газовых включениях объясняется как малой диэлектрической проницаемостью газов (соответственно большой напряженностью во включениях), так и малой электрической прочностью газов. Рассеяние энергии частичными разрядами приводит к росту tgd при увеличении напряжения выше значения Uч.р. Частичные заряды в небольшом количестве не могут вызвать необратимых изменений в твердой изоляции. Если через небольшое время снизить напряжение на изоляции ниже напряжения начала частичных разрядов Uч.р, то частичные разряды гаснут и tgd снижается до исходного значения. Однако образование частичных разрядов в высоковольтной изоляции, предназначенной для длительной эксплуатации, весьма нежелательно. Частичные разряды вызывают дополнительный нагрев изоляции, ее эрозию и в результате приводят к ускоренному старению изоляции.
Сказанное определяет важность получения характеристики tgd(U) для высоковольтной изоляции.
Как правило, рабочее напряжение изоляции должно быть ниже напряжения начала частичных разрядов Uч.р. Следует считать более высококачественной такую изоляцию, у которой Uч.р более высокое, а подъем кривой tgd (U) более пологий.
Не нашли то, что искали? Воспользуйтесь поиском:
Если вам интересна история реле и вы изучаете принцип работы разных типов реле . Подписывайтесь на мой канал на Ютубе .
Что такое тангенс угла диэлектрических потерь, от чего он зависит и как его измеряют |