Содержание
Определяем мощность SMD-резисторов по их размерам
Также, как и выводные резисторы, SMD-резисторы для монтажа на поверхность рассчитаны на определённую мощность рассеивания. Но, как её узнать?
На самом деле, определить мощность SMD резистора не так уж и сложно. Мощность рядовых чип-резисторов, которых в современной электронике огромное множество, можно определить исходя из их размеров.
Далее представлена таблица №1, в которой указано соответствие типоразмера SMD-резистора и его мощности рассеивания. Отмечу, что в таблице указан типоразмер в дюймовой системе кодировки, а реальные размеры указаны в миллиметрах (длина и ширина). Сделано это исходя из удобства.
Дело в том, что до сих пор наибольшее распространение получила система кодирования типоразмера чип-резисторов в дюймах. Её используют все: производители, поставщики и магазины. А для того, чтобы определить типоразмер, а, следовательно, и мощность, мы должны замерить длину и ширину резистора обычной линейкой или другим более точным инструментом, шкала которого проградуирована в миллиметрах.
Если у вас на руках имеется SMD-резистор, мощность которого требуется узнать, то, сделав замеры обычной линейкой, можно быстро определить его типоразмер и соответствующую ему мощность рассеивания.
Таблица №1. Соответствие мощности SMD-резистора и его типоразмера.
Типоразмер (дюймовый, inch) | Мощность (Power Rating at 70°C) | Мощность, Вт. | Длина (L) /Ширина (W), мм. |
0075 | 1/50W | 0,02 Вт | 0,3/0,15 |
01005 | 1/32W | 0,03 Вт | 0,4/0,2 |
0201 | 1/20W | 0,05 Вт | 0,6/0,3 |
0402 | 1/16W, 1/8W | 0,063 Вт; 0,125 Вт | 1,0/0,5 |
0603 | 1/10W, 1/5W | 0,1 Вт; 0,2 Вт | 1,6/0,8 |
0805 | 1/8W, 1/4W | 0,125 Вт; 0,25 Вт | 2,0/1,25 |
1206 | 1/4W, 1/2W | 0,25 Вт; 0,5 Вт | 3,2/1,6 |
1210 | 1/2W | 0,5 Вт | 3,2/2,5 |
1218 | 1W; 1,5W | 1 Вт; 1,5 Вт | 3,2/4,8 |
1812 | 1/2W, 3/4W | 0,5 Вт; 0,75 Вт | 4,5/3,2 |
2010 | 3/4W | 0,75 Вт | 5,0/2,5 |
2512 | 1W; 1,5W; 2W | 1 Вт; 1,5 Вт; 2 Вт | 6,4/3,2 |
Мощность SMD-резисторов с широкими электродами (Long side termination chip resistors) |
|||
0406 | 0,25. 0,3W | 0,25. 0,3 Вт | 1,0/1,6 |
0612 | 0,75. 1W | 0,75. 1 Вт | 1,6/3,2 |
1020 | 1W | 1 Вт | 2,5/5,0 |
1218 | 1W | 1 Вт | 3,2/4,6 |
1225 | 2W | 2 Вт | 3,2/6,4 |
В таблице №1 также указаны типовые мощности и для SMD-резисторов с широкими боковыми электродами (выводами). В документации такие резисторы называются Long Side Termination Chip Resistors или Wide Terminal Chip Resistors.
Хочу обратить внимание на то, что в колонке (Мощность, Power Rating at 70°C) для некоторых типоразмеров указано несколько значений мощности. Дело в том, что производители выпускают разные серии SMD-резисторов. В одной серии мощность резисторов для типоразмера 1206 нормирована на уровне 0,5 Вт, а в другой 0,25 Вт.
Например, чип-резисторы серии CRM фирмы Bourns ® рассчитаны на повышенную мощность: CRM0805 (0,25W), CRM1206 (0,5W), CRM2010 (1W). Используются такие в импульсных источниках питания в качестве токовых датчиков, токоограничительных резисторов, снабберов (демпфирующих резисторов).
Такое положение дел нужно учитывать, если вы собираетесь использовать резистор, мощность которого была определена исходя из размеров. При этом, нужно остановиться на наименьшем значении мощности, взятом из таблицы №1.
Если этим пренебречь, то может случится так, что вам попадётся резистор с меньшей мощностью, например, 0,25W вместо 0,5W, а это уже чревато его перегревом и выходом из строя при работе в реальной схеме.
Хотелось бы отметить, что сведения в таблице №1 в основном относятся к стандартным SMD-резисторам, то есть таким, которые широко и в большом количестве используются при производстве электроники.
Как правило, это чип резисторы на основе толстой плёнки (thick film chip resistors), так как они являются самыми дешёвыми, и, как следствие, самыми распространёнными. Примером могут служить серии стандартных толстоплёночных SMD резисторов D/CRCW e3 (Vishay ® ), ERJ (Panasonic) или RC (Yageo).
Не секрет, что существует огромное количество узкоспециализированных SMD-резисторов, которые имеют свои особенности. К таким можно отнести резисторы, которые работают при повышенных температурах (до 230°C), в условии агрессивной среды (Antisulfur), миллиомные чип резисторы, SMD резисторы-перемычки. Если такие резисторы и встречаются на печатных платах от потребительской электроники, то, как правило, их количество невелико, они применяются в определённых цепях электронных схем.
Их характеристики, в том числе и мощность рассеивания, может существенно отличатся от усреднённых значений, которые приведены в таблице №1 и являются типовыми для стандартных SMD-резисторов, количество которых в электронной схеме может быть просто огромным.
Типовые мощности тонкоплёночных резисторов (Thin film chip resistors) также соответствуют значениям из таблицы №1. Резисторы для некоторых областей применения, например, для автомобильной электроники (avtomotive grade), могут иметь мощность чуть выше той, что указана в таблице №1.
Как узнать мощность резисторных SMD-сборок?
Для резисторных SMD-сборок мощность в технической документации указывается на элемент (per element), а иногда ещё и на сборку вцелом (per package). Обычно, чип-сборка состоит из набора 2, 4, или 8 резисторов стандартного типоразмера. Например, набор типоразмера 0408 соответствует четырём SMD резисторам типоразмера 0402.
Так вот, типовая мощность одного резистора в такой сборке мало чем отличается от стандартной мощности отдельного SMD-резистора такого же типоразмера.
Так, для резисторных SMD-сборок 0202 (0201 × 2) мощность на элемент обычно составляет 0,03W (1/32W). Для тех, кто ещё не знает, сборка типоразмера 0202, – это два резистора 0201 в наборе.
Для сборок 0404 (0402 × 2), 0408 (0402 × 4) мощность на элемент обычно не превышает значения в 0,063W (1/16W).
Для сборок 0606 (0603 × 2), 0612 (0603 × 4), 0616 (0602 × 8) мощность на элемент составляет 0,063. 0,125W.
Чип-сборка типоразмера 0612 на 4 резистора с выводами типа convex (т.е. выпуклыми). Мощность на элемент 0,1W.
На следующем фото резисторная чип-сборка 8×1206 с материнской платы старого, но очень крутого промышленного компьютера. На современных платах наборы такого типоразмера встречаются очень редко.
Ориентировочная мощность такой сборки 0,25W на элемент. Это если исходить из соображения, что типовая мощность для типоразмера 1206 составляет минимум 0,25W.
Хотя, стоит иметь ввиду, что в документации на стандартные современные сборки типоразмера 4×1206 минимальная мощность обычно 0,125W (1/8W) на элемент, что в 2 раза меньше. Так что, тут можно и поспорить, но я всё же остановлюсь на значении в 0,25W.
Кривая снижения мощности SMD-резистора и диапазон рабочей температуры.
В англоязычной тех. документации мощность рассеивания называется Power Dissipation (иногда Rated dissipation), а обозначается как P70. Нижнему индексу (70) соответствует температура окружающей среды, при которой резистор способен долговременно выдерживать указанную мощность.
Каждая серия резисторов рассчитана на работу в определённом интервале температур. В большинстве своём, рабочая температура обычных чип-резисторов на основе толстой плёнки (thick film) лежит в интервале от -55°C до +155°C. Но, для микроминиатюрных типоразмеров от 0075 до 0201 максимальная температура, как правило, ограничена на уровне +125°C.
Как уже говорилось, в технической документации мощность SMD-резисторов указывается для температуры окружающей среды +70°C. Если резистор, эксплуатируется при температуре выше +70°C, то мощность, которая выделяется на нём в процессе работы должна быть снижена. Проще говоря, при повышенной температуре резистор просто не успевает охлаждаться.
На графике снижения мощности (Power Derating Curve) по шкале Rated Load (%) указан процент от номинальной мощности, которую способен выдержать SMD-резистор при соответствующей температуре окружающей среды (Ambient Temperature, °C).
Так, при температуре в +120°C мощность должна быть снижена до уровня 40% для изделий, рассчитанных на работу в температурном диапазоне -55°C. +155°C. Если у нас резистор на 1 ватт, то при данной температуре он способен долговременно выдерживать мощность в 0,4 ватта. Нетрудно заметить, что температура в 155°C соответствует нулевой мощности.
Приведённый график является типовым для стандартных толстоплёночных резисторов. Для специализированных SMD-резисторов график снижения мощности может существенно отличаться. Например, так он выглядит для резисторов серии PHT (Vishay).
Это высокостабильные тонкоплёночные чип резисторы для работы при повышенной температуре окружающей среды (от -55°C до +215°C). Даже к установке таких резисторов на печатную плату предъявляются определённые требования, чтобы эффективно отводить тепло от резистивного слоя.
Мощные SMD-резисторы.
Существует мнение, что максимальная мощность рассеивания SMD резисторов ограничена их физическими размерами и параметрами резистивного слоя, например, сечением. И это так. Несмотря на это, среди резисторов для поверхностного монтажа есть и модели повышенной мощности.
К таким можно отнести чип резисторы серии PCAN (Vishay). Особенностью данных резисторов является подложка из нитрида алюминия (aluminum nitride, AlN), которая обладает повышенной теплопроводностью. 90% тепла от резистивного слоя SMD-резистора проходит через тело компонента, то есть через его подложку (substrate). Керамика на основе алюмонитрида (нитрида алюминия) обладает высокой теплопроводностью, что позволяет быстрее отводить тепло от резистивного слоя. К тому же, керамика на основе алюмонитрида нетоксична.
Кроме этого нижняя часть контактных электродов данных чип-резисторов имеет увеличенную площадь, за счёт которой удаётся уменьшить тепловое сопротивление между проводящим слоем резистора и контактными площадками на печатной плате.
Такое сочетание технических решений позволяет преодолеть мощностные ограничения для стандартных типоразмеров смд-резисторов. Для сравнения, приведу значения мощности рассеивания для четырёх типоразмеров, доступных в данной серии.
Тонкоплёночные прецизионные чип резисторы повышенной мощности серии PCAN (Vishay) |
|
Типоразмер, inch | Мощность, W |
0603 | 0,5 |
0805 | 1 |
1206 | 2 |
2512 | 6 |
Как видим, для типоразмера 2512 мощность составляет 6 Вт. Стандартный SMD-резистор такого же типоразмера, как правило, имеет мощность не более 1 или 2 Вт.
Так же есть чип-резисторы с более скромными характеристиками, например, серии PHP (Vishay). В ней уже используется подложка из рядового, хотя, и высокочистого оксида алюминия (alumina, Al2O3), который широко используется в качестве материала для подложки в стандартных SMD-резисторах.
Из особенностей: увеличенная площадь нижних электродов Wraparound-типа. Допустимая мощность для типоразмера 2512 данной серии составляет 2,5 Вт. Это на 0,5. 1,5 ватта больше, чем у стандартных резисторов аналогичного размера.
Работа чип-резисторов на таких мощностях возможна с одной оговоркой, – это соблюдение правил монтажа на печатную плату. Об этом прямо сообщается в технической документации на серию.
Какие бы технические ухищрения не использовались для увеличения мощностных характеристик SMD-резисторов, но тепло всё равно отводить куда-то надо. Именно поэтому, к таким резисторам предъявляются особые требования монтажа их на плату.
Основными способами отвода избытка тепла от резистивного слоя SMD-резистора являются соединительные контакты медных проводников, поверхность печатной платы и внешнее охлаждение.
В печатных платах под поверхностный монтаж элементов, избытки тепла от элементов отводятся в толщу платы и медные полигоны, которые служат своеобразным радиатором. В некоторых случаях может применятся принудительное внешнее охлаждение (например, вентиляторы).
Сопротивление | Маркировка резистора | Мощность | Склад | Заказ |
---|---|---|---|---|
0,001Ом ±1% | LR2512-22 R001 F2 | 2 Вт | ||
0,005Ом ±1% | LR2512-22 R005 F4 | 2 Вт | ||
0,01Ом ±1% | LR2512-22 R010 F2 | 2 Вт | ||
0,01Ом ±1% | LR2512-22 1% 2W R010 F4 | 2 Вт | ||
0,025Ом ±2% | FMF25GPJR025 | 2 Вт | ||
0,05Ом ±1% | LR2512-22 R050 F4 | 2 Вт | ||
0,1Ом ±1% | RL2512FK-070R1L | 1 Вт | ||
0,5Ом ±1% | RP25 0E50FRL | 1 Вт | ||
1Ом ±1% | WR25W1R00FTL | 1 Вт | ||
2Ом ±1% | RP25 2E00FRL | 1 Вт | ||
4,99Ом ±1% | RP25 4E99FRL | 1 Вт | ||
10Ом ±1% | RP25 10E0FRL | 1 Вт | ||
24,9Ом ±1% | RP25 24E9FRL | 1 Вт | ||
49,9Ом ±1% | RP25 49E9FRL | 1 Вт | ||
100Ом ±1% | RP25 100EFRL | 1 Вт |
SMD резисторы типоразмера 2512 5% по ряде E24, мощностью 1Вт
Сопротивление | Склад | Заказ |
---|---|---|
1 Ом | ||
1,2 Ом | ||
1,5 Ом | ||
1,8 Ом | ||
2,2 Ом | ||
2,7 Ом | ||
3,3 Ом | ||
3,9 Ом | ||
4,7 Ом | ||
5,1 Ом | ||
5,6 Ом | ||
6,8 Ом | ||
7,5 Ом | ||
8,2 Ом | ||
10 Ом | ||
12 Ом | ||
15 Ом | ||
18 Ом | ||
22 Ом | ||
27 Ом | ||
33 Ом | ||
47 Ом | ||
51 Ом | ||
56 Ом | ||
68 Ом | ||
75 Ом | ||
82 Ом | ||
100 Ом | ||
110 Ом | ||
120 Ом |
Сопротивление | Склад | Заказ |
---|---|---|
Сопротивление | Склад | Заказ |
---|---|---|
Упаковка: В блистр-ленте на катушке диаметром 180 мм по 4000 штук резисторов типоразмера 2512.
Размеры smd резисторов 2512
Технические характеристики резисторов 2512
- Номинальная мощность резистора 2512 при 70°С. 1.0 Вт
- Рабочее напряжение резистора 2512. 200 В
- Максимальное напряжение резистора 2512. 400 В
- Диапазон рабочих температур резистора 2512. -55° +125°С
- Температурный коэффициент сопротивления. 100 ppm/°С
Мощные чип резисторы изготовлены методом спекания токопроводящей пасты на керамической подложке, эта же технология используется и при изготовлени меньших типоразмеров smd резисторов: 0402 5%, 0402 1%; 0603 5%, 0603 1%; 0805 5%, 0805 1%; 1206 5%, 1206 1%.
С целью увеличения мощности низкоомных резисторов их изготавливают методом нанесения токопроводящей пасты на алюминиевую подложку. Для высоковольтных цепей изготавливаются резисторы с сопротивлением свыше 10 Мом.
Маркировка чип резисторов для поверхностного монтажа
Маркровка чип резисторов производится посредствам трафаретной печати на резистивный слой. Сопротивление резистора мене одного ома обозначается буквой R обозночающим децимальную точку и цифрами обозначающим номинал после запятой. Сопротивление резисторов свыше одного ома маркруются двумя цифрами значением номинала третьей цифрой обозначающей количество нулей в множителе при измерение номинала в омах. Для маркровки 1% чип резисторов по ряду Е96 используется двух символьный код
Таблица маркировки smd резисторов по ряду E96 1% представлена в формате pdf
Технические характеристики и маркировка низкоомных 1% резисторов для поверхностного монтажа RL2512 1Вт
Технические характеристики и маркировка мощных 1% резисторов на подложке из металлического сплава LR2512 2Вт
Технические характеристики и маркировка мощных 1% резисторов на подложке из металлического сплава FMF25 2Вт
Технические характеристики и маркировка 5% резисторов для поверхностного монтажа RP25
Технические характеристики и маркировка 5% резисторов для поверхностного монтажа RP25 производитель Walsin
Технические характеристики и маркировка мощных 1% резисторов на подложке из металлического сплава LR2512 2Вт Ralec
Резистор – это элемент, обладающий каким-либо сопротивлением, применяется в электронике и электротехнике для ограничения тока или получения необходимых напряжений (например, использование резистивного делителя). SMD-резисторы – это резисторы для поверхностного монтажа, иначе говоря – монтажа на поверхность печатной платы.
Основные характеристики для резисторов – это номинальное сопротивление, измеряется в Омах и зависит от толщины, длины и материалов резистивного слоя, а также рассеиваемая мощность.
Электронные компоненты для поверхностного монтажа отличаются малыми габаритами за счет того, что у них либо отсутствуют выводы для подключения в классическом понимании. У элементов для объемного монтажа есть длинные выводы.
Ранее при сборке РЭА ими соединяли компоненты цепи между собой (навесной монтаж) или продевали их через печатную плату в соответствующие отверстия. Конструктивно выводы или контакты у них выполнены в вид металлизированных площадок на корпусе элементов. В случае же микросхем и транзисторов поверхностного монтажа у элементов присутствуют короткие жесткие «ножки».
Одной из основных характеристик SMD-резисторов является и типоразмер. Это величина длины и ширины корпуса, по этим параметрам подбирают элементы, соответствующие разводке платы. Обычно размеры в документации пишутся сокращенно четырёхзначным числом, где первые две цифры указывают длину элемента в мм, а вторая пара символов – ширину в мм. Однако, фактически, размеры могут отличаться от маркировки в зависимости от типов и серии элементов.
Типовые размеры SMD-резисторов и их параметры
Рисунок 1 – обозначения для расшифровки типоразмеров.
1. SMD-резисторы 0201:
L=0.6 мм; W=0.3 мм; H=0.23 мм; L1=0.13 м.
Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
Допустимое отклонение от номинала: 1% (F); 5% (J)
Номинальная мощность: 0,05 Вт
Рабочее напряжение: 15 В
Максимально допустимое напряжение: 50 В
Рабочий диапазон температур: –55 — +125 °С
2. SMD-резисторы 0402:
L=1.0 мм; W=0.5 мм; H=0.35 мм; L1=0.25 мм.
Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
Допустимое отклонение от номинала: 1% (F); 5% (J)
Номинальная мощность: 0,062 Вт
Рабочее напряжение: 50 В
Максимально допустимое напряжение: 100 В
Рабочий диапазон температур: –55 — +125 °С
3. SMD-резисторы 0603:
L=1.6 мм; W=0.8 мм; H=0.45 мм; L1=0.3 мм.
Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
Допустимое отклонение от номинала: 1% (F); 5% (J)
Номинальная мощность: 0,1 Вт
Рабочее напряжение: 50 В
Максимально допустимое напряжение: 100 В
Рабочий диапазон температур: –55 — +125 °С
4. SMD-резисторы 0805:
L=2.0 мм; W=1.2 мм; H=0.4 мм; L1=0.4 мм.
Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
Допустимое отклонение от номинала: 1% (F); 5% (J)
Номинальная мощность: 0,125 Вт
Рабочее напряжение: 150 В
Максимально допустимое напряжение: 200 В
Рабочий диапазон температур: –55 — +125 °С
5. SMD-резисторы 1206:
L=3.2 мм; W=1.6 мм; H=0.5 мм; L1=0.5 мм.
Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
Допустимое отклонение от номинала: 1% (F); 5% (J)
Номинальная мощность: 0,25 Вт
Рабочее напряжение: 200 В
Максимально допустимое напряжение: 400 В
Рабочий диапазон температур: –55 — +125 °С
6. SMD-резисторы 2010:
L=5.0 мм; W=2.5 мм; H=0.55 мм; L1=0.5 мм.
Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
Допустимое отклонение от номинала: 1% (F); 5% (J)
Номинальная мощность: 0,75 Вт
Рабочее напряжение: 200 В
Максимально допустимое напряжение: 400 В
Рабочий диапазон температур: –55 — +125 °С
7. SMD-резисторы 2512:
L=6.35 мм; W=3.2 мм; H=0.55 мм; L1=0.5 мм.
Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
Допустимое отклонение от номинала: 1% (F); 5% (J)
Номинальная мощность: 1 Вт
Рабочее напряжение: 200 В
Максимально допустимое напряжение: 400 В
Рабочий диапазон температур: –55 — +125 °С
Как вы можете видеть, с увеличением размеров чип-резистора увеличивается и номинальная рассеиваемая мощность в таблице ниже нагляднее приведена эта зависимость, а также геометрические размеры резисторов других типов:
Таблица 1 – Маркировка SMD-резисторов
В зависимости от размеров может применяться один из трёх видов маркировки номинала резистора. Выделяют три вида маркировки:
1. С помощью 3-х цифр. При этом первые две обозначают количество ом, а последняя количество нулей. Так маркируют резисторы из ряда Е-24, c отклонением от номинала (допуском) в 1 или 5%. Типоразмер резисторов с такой маркировкой – 0603, 0805 и 1206. Пример такой маркировки: 101 = 100 = 100 Ом
Рисунок 2 – изображение SMD-резистора с номиналом в 10 000 Ом, он же 10 кОм.
2. С помощью 4-х символов. В этом случае 3 первых цифры обозначают количество Ом, а последняя – количество нулей. Так описываются резисторы из ряда Е-96 типоразмеров 0805, 1206. Если в маркировке присутствует буква R – она играет роль запятой, отделяющей целые от долей. Таким образом маркировка 4402 расшифровывается как 44 000 Ом или 44 кОм.
Рисунок 3 – изображение SMD-резистора с номиналом в 44 кОма
3. Маркировка комбинацией из 3 символов – цифр и букв. При этом 2 первых знака – это цифры, обозначают закодированное значение сопротивления в Омах. Третий символ – это множитель. Таким способом маркируются резисторы типоразмера 0603 из ряда сопротивлений Е-96, с допуском 1%. Перевод букв во множитель выполняется по ряду: S=10^-2; R=10^-1; B=10; C=10^2; D=10^3; E=104; F=10^5.
Расшифровка кодов (первых двух символов) ведется по таблице, изображенной ниже.
Таблица 2 – расшифровка кодов маркировки SMD-резисторов
Рисунок 4 – резистор с трёхсимвольной маркировкой 10С, если воспользоваться таблицей и приведенным рядом множителей, то 10 – это 124 Ома, а С – это множитель 10^2, что равняется 12 400 Ома или 12.4 кОм.
Основные параметры резисторов
У идеального резистора учитывают только его активное сопротивление. В реальности же дело обстоит иначе – у резисторов есть и паразитные индуктивно-емкостные составляющие. Ниже приведен один из вариантов эквивалентной схемы резистора:
Рисунок 5 – Эквивалентная схема резистора
Как можно увидеть на схеме присутствуют и емкости (конденсаторы) и индуктивность. Их наличие связано с тем, что у каждого проводника есть определенная индуктивность, а у группы проводников – паразитная ёмкость. У резистора же они связаны с расположением его резистивного слоя и его конструкцией.
Эти параметры в цепях постоянного тока и низкочастотных цепях обычно не учитывают, но они могут внести существенное влияние в высокочастотных радиопередающих схемах и в импульсных блоках питания, где протекают токи частотами в десятки-сотни кГц. В таких цепях любая паразитная составляющая, в плоть до неправильной разводки проводящих дорожек печатной платы, может сделать невозможной её работу.
Итак, индуктивность и емкость – это элементы, которые оказывают влияние на полное сопротивление и фронты токов и напряжений в зависимости от частоты. Наилучшим по частотным характеристикам являют элементы для поверхностного монтажа, благодаря как раз-таки их малым размерам.
Рисунок 6 – На графике изображено отношение полного сопротивления резистора к активному на различных частотах
В полное сопротивление входит и активное сопротивление, и реактивные сопротивления паразитной индуктивностио и емкости. На графике можно наблюдать падение полного сопротивления с ростом частоты.
Резисторы поверхностного монтажа дешевы и удобны при конвеерной автоматизированной сборке электронных устройств. Однако, они не так просты, как может показаться.
Рисунок 7 – Внутреннее устройство SMD-резистора
Основой резистора является подложка из Al2O3 – окиси алюминия. Это хороший диэлектрик и материал с хорошей теплопроводностью, что не менее важно, так как в процессе работы вся мощность резистора выделяется в тепло.
В качестве резистивного слоя используется тонкая металлическая или оксидная пленка, например – хром, двуокись рутения (как изображено на рисунке выше). От материала из которого состоит эта пленка зависят характеристики резисторов. Резистивный слой отдельных резисторов представляет собой пленку толщиной до 10 мкм, из материала с низким ТКС (температурным коэффициентом сопротивления), что дает высокую температурную стабильность параметров и возможность создать высокопрецизионные элементы, пример такого материала – константан, однако номиналы таких резисторов редко превышают 100 Ом.
Контактные площадки резистора формируются из набора слоев. Внутренний контактный слой выполняют из дорогих материалов вроде серебра или палладия. Промежуточный – из никеля. А внешний – свинцово оловянный. Такая конструкция обусловлена необходимостью обеспечить высокую адгезию (связанность) слоев. От них зависит надежность контактов и шумы.
Для снижения паразитных составляющих приходят к следующим технологическим решении при формировании резистивного слоя:
Рисунок 8 – форма резистивного слоя
Монтаж таких элементов происходит в печах, а в радиолюбительских мастерских с помощью паяльного фена, то есть потоком горячего воздуха. Поэтому при их изготовлении уделяется внимание температурной кривой нагрева и охлаждения.
Рисунок 9 – кривая нагрева и охлаждения при пайке SMD-резисторов
Использование компонентов поверхностного монтажа положительно сказалось на массогабаритных показателях радиоэлектронной аппаратуры, а также на частотных характеристиках элемента. Современная промышленность выпускает большую часть распространенных элементов в SMD-исполнении. В том числе: резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры, интегральные микросхемы.