Содержание
Опубликовано 13.12.2013 13:10:00
В статье рассмотрим устройство Motor Shield’а, разработанного компанией Adafruit, а также научимся управлять с его помощью различными типами двигателей.
Данная плата позволит подключить одновременно к Arduino до четырех коллекторных DC двигателей, либо до двух биполярных шаговых двигателей. К тому же на плате имеются разъемы для подключения двух сервоприводов.
Компоненты для повторения (купить в Китае):
На борту данного шилда имеется две микросхемы L293D (1). L-ка позволяет управлятьслаботочными двигателями с током потребления до 600 мА на канал. На двух пятипиновыхклеммниках (2) можно насчитать 4 разъема для подключения двигателей (M1, M2, M3, M4),центральные выводы на пятипиновых клеммниках соединены с землей и служат для удобствапри подключении пятипроводных шаговый двигателей. Использование двух микросхем L293D позволяет одновременно подключить 4 моторчика постоянного тока либо 2 шаговых моторалибо два моторчика и шаговый. Для управления на прямую выводами L-ки (IN1, IN2, IN3, IN4),отвечающимими за выбор направления вращения, необходимо 4 вывода, а для двух микросхемцелых 8. Для уменьшения количества управляющих выводов в игру вступает сдвиговый регистр74НС595 (3). Благодаря регистру управление сводится с 8ми пинов к 4ем.Также, на плату выведены 2 разъема для подключения сервоприводов (4). Управлениесервоприводами стандартное с помощью библиотеки Servo.h и никак не связано с библиотекойкоторую мы будем рассматривать далее.Питание силовой части производится либо от внешнего клеммника (6) либо замыканиемджампера (5) ( питание от клеммника моторов +M соединяется с выводом Vin Arduino). При замкнутом джампере напряжение для объединенного питания должно лежать в пределах от 6 до 12Вольт
К явным минусам данного шилда можно отнести то, что он задействует практически все цифровые пины:
Выводы, отвечающие за скорость вращения двигателей
Цифровой вывод 11- DC Мотор №1 / Шаговый №1
Цифровой вывод 3- DC Мотор №2 / Шаговый №1
Цифровой вывод 5- DC Мотор №3 / Шаговый №2
Цифровой вывод 6- DC Мотор №4 / Шаговый №2
Выводы, отвечающие за выбор направления вращения двигателей:
Цифровые выводы 4, 7, 8 и 12
Выводы для управления сервоприводами (выведены на штырьки на краю платы):
Цифровой вывод 9- Сервопривод №1
Цифровой вывод 10- Сервопривод №2
В итоге незадействованными цифровыми выводами остаются только пины 2, 13 и пины интерфейса UART- 0, 1.
Однако есть выход из данной ситуации. У нас остались незадействованные аналоговые входы A0-A6, их можно использовать как цифровые. В коде они будут записываться как цифровые с 14 по 19.
Подключение к Arduino
Библиотека необходимая для работы с модулем AFMotor.h
Её необходимо распаковать и добавить в папку "libraries" в папке с Arduino IDE. Не забывайте перезагрузить среду, если на момент добавления IDEшка была открыта.
Втыкаем шилд в плату, подключаем моторы и поехали!
Драйвер двигателя выполняет крайне важную роль в проектах ардуино, использующих двигатели постоянного тока или шаговые двигатели. C помощью микросхемы драйвера или готового шилда motor shield можно создавать мобильных роботов, автономные автомобили на ардуино и другие устройства с механическими модулями. В этой статье мы рассмотрим подключение к ардуино популярных драйверов двигателей на базе микросхем L298N и L293D.
Драйвер двигателя в проектах ардуино
Для чего нужен драйвер двигателя?
Как известно, плата ардуино имеет существенные ограничения по силе тока присоединенной к ней нагрузки. Для платы это 800 mA, а для каждого отдельного вывода – и того меньше, 40mA. Мы не можем подключить напрямую к Arduino Uno, Mega или Nano даже самый маленький двигатель постоянного тока. Любой из этих двигателей в момент запуска или остановки создаст пиковые броски тока, превышающие этот предел.
Как же тогда подключить двигатель к ардуино? Есть несколько вариантов действий:
Использовать реле. Мы включаем двигатель в отдельную электрическую сеть, никак не связанную с платой Arduino. Реле по команде ардуино замыкает или размыкает контакты, тем самым включает или выключает ток. Соответственно, двигатель включается или выключается. Главным преимуществом этой схемы является ее простота и возможность использовать Главным недостатком данной схемы является то, что мы не можем управлять скоростью и направлением вращения.
Использовать силовой транзистор. В данном случае мы можем управлять током, проходящим через двигатель, а значит, можем управлять скоростью вращения шпинделя. Но для смены направления вращения этот способ не подойдет.
Использовать специальную схему подключения, называемую H-мостом, с помощью которой мы можем изменять направление движения шпинделя двигателя. Сегодня можно без проблем найти как микросхемы, содержащие два или больше H-моста, так и отдельные модули и платы расширения, построенные на этих микросхемах.
В этой статье мы рассмотрим последний, третий вариант, как наиболее гибкий и удобный для создания первых роботов на ардуино.
Микросхема или плата расширения Motor Shield
Motor Shield – плата расширения для Ардуино, которая обеспечивает работу двигателей постоянного тока и шаговых двигателей. Самыми популярными платами Motor Shield являются схемы на базе чипов L298N и L293D, которые могут управлять несколькими двигателями. На плате установлен комплект сквозных колодок Ардуино Rev3, позволяющие устанавливать другие платы расширения. Также на плате имеется возможность выбора источника напряжения – Motor Shield может питаться как от Ардуино, так и от внешнего источника. На плате имеется светодиод, который показывает, работает ли устройство. Все это делает использование драйвера очень простым и надежным – не нужно самим изобретать велосипеды и решать уже кем-то решенные проблемы. В этой статье мы будем говорить именно о шилдах.
Принцип действия H-моста
Принцип работы драйвера двигателя основан на принципе работы H-моста. H-мост является электронной схемой, которая состоит из четырех ключей с нагрузкой. Название моста появилось из напоминающей букву H конфигурации схемы.
Схема моста изображена на рисунке. Q1…Q4 0 полевые, биполярные или IGBT транзисторы. Последние используются в высоковольтных сетях. Биполярные транзисторы практически не используются, они могут присутствовать в маломощных схемах. Для больших токов берут полевые транзисторы с изолированным затвором. Ключи не должны быть замкнуты вместе одновременно, чтобы не произошло короткого замыкания источника. Диоды D1…D4 ограничительные, обычно используются диоды Шоттки.
С помощью изменения состояния ключей на H-мосте можно регулировать направление движения и тормозить моторы. В таблице приведены основные состояния и соответствующие им комбинации на пинах.
Q1 | Q2 | Q3 | Q4 | Состояние |
1 | 0 | 0 | 1 | Поворот мотора вправо |
0 | 1 | 1 | 0 | Поворот мотора влево |
0 | 0 | 0 | 0 | Свободное вращение |
0 | 1 | 0 | 1 | Торможение |
1 | 0 | 1 | 0 | Торможение |
1 | 1 | 0 | 0 | Короткое замыкание |
0 | 0 | 1 | 1 | Короткое замыкание |
Драйвер двигателя L298N
Модуль используется для управления шаговыми двигателями с напряжением от 5 до 35 В. При помощи одной платы L298N можно управлять сразу двумя двигателями. Наибольшая нагрузка, которую обеспечивает микросхема, достигает 2 А на каждый двигатель. Если подключить двигатели параллельно, это значение можно увеличить до 4 А.
Плата выглядит следующим образом:
Распиновка микросхемы L298N:
- Vcc – используется для подключения внешнего питания;
- 5В;
- Земля GND;
- IN1, IN2, IN3, IN4 – используется для плавного управления скоростью вращения мотора;
- OUT1, OUT2 – используется для выхода с первого двигателя;
- OUT3, OUT4 – используется для выхода со второго двигателя;
- S1 – переключает питание схемы: от внешнего источника или от внутреннего преобразователя;
- ENABLE A, B – требуются для раздельного управления каналами. Используются в двух режимах – активный, при котором каналами управляет микроконтроллер и имеется возможность изменения скорости вращения, и пассивный, в котором невозможно управлять скоростью двигателей (установлено максимальное значение).
При подключении двух двигателей, нужно проверить, чтобы у них была одинаковая полярность. Если полярность разная, то при задании направления движения они будут вращаться в противоположные стороны.
Драйвер двигателя L293D
L293D – является самой простой микросхемой для работы с двигателями. L293D обладает двумя H-моста, которые позволяют управлять двумя двигателями. Рабочее напряжение микросхемы – 36 В, рабочий ток достигает 600 мА. На двигатель L293D может подавать максимальный ток в 1,2 А.
В схеме имеется 16 выходов. Распиновка:
- +V – питание на 5 В;
- +Vmotor – напряжение питания для мотором до 36 В;
- 0V – земля;
- En1, En2 –включают и выключают H-мосты;
- In1, In2 – управляют первым H-мостом;
- Out1, Out2 – подключение первого H-моста;
- In3, In4 – управляют вторым H-мостом;
- Out3, Out4 – подключение второго H-моста.
Для подключения к микроконтроллеру Arduino Uno нужно соединить выходы In1 на L293D и 7 пин на Ардуино, In2 – 8, In3 – 2, In4 – 3, En1 – 6, En2 – 5, V – 5V, Vmotor – 5 V, 0V – GND. Пример подключения одного двигателя к Ардуино показан на рисунке.
Драйвер двигателя на микросхеме HG7881
HG7881 – двухканальный драйвер, к которому можно подключить 2 двигателя или четырехпроводной двухфазный шаговый двигатель. Устройство часто используется из-за своей невысокой стоимости. Драйвер используется только для изменения направления вращения, менять скорость он не может.
Плата содержит 2 схемы L9110S, работающие как H-мост.
Характеристики драйвера HG7881:
- 4-контактное подключение;
- Питание для двигателей от 2,5 В до 12 В;
- Потребляемый ток менее 800 мА;
- Малые габариты, небольшой вес.
Распиновка:
- GND – земля;
- Vcc – напряжение питания 2,5В – 12В;
- A-IA – вход A(IA) для двигателя A;
- A-IB – вход B (IB) для двигателя A;
- B-IA – вход A(IA) для двигателя B;
- B-IB – вход B (IB) для двигателя B.
В зависимости от поданного сигнала на выходах IA и IB будет разное состояние для двигателей. Возможные варианты для одного из моторов приведены в таблице.
IA | IB | Состояние мотора |
0 | 0 | Остановка |
1 | 0 | Двигается вперед |
0 | 1 | Двигается назад |
1 | 1 | Отключение |
Подключение одного двигателя к Ардуино изображено на рисунке.
Сравнение модулей
Модуль L293D подает максимальный ток в 1,2А, в то время как на L298N можно добиться максимального тока в 4 А. Также L293D обладает меньшим КПД и быстро греется во время работы. При этом L293D является самой распространенной платой и стоит недорого. Плата HG7881 отличается от L293D и L298N тем, что с ее помощью можно управлять только направлением вращения, скорость менять она не может. HG7881 – самый дешевый и самый малогабаритный модуль.
Подключение L298N к Arduino
Как уже упоминалось, в первую очередь нужно проверить полярность подключенных двигателей. Двигатели, вращающиеся в различных направлениях, неудобно программировать.
Нужно присоединить источник питания. + подключается к пину 4 на плате L298N, минус (GND) – к 5 пину. Затем нужно соединить выходы с L298N и пины на Ардуино, причем некоторые из них должны поддерживать ШИМ-модуляцию. На плате Ардуино они обозначены
. Выходы с L298N IN1, IN2, IN3 и IN4 подключить к D7, D6, D5 и D4 на Ардуино соответственно. Подключение всех остальных контактов представлено на схеме.
Направление вращения задается с помощью сигналов HIGH и LOW на каждый канал. Двигатели начнут вращаться, только когда на 7 пине для первого мотора и на 12 пине для второго на L298N будет сигнал HIGH. Подача LOW останавливает вращение. Чтобы управлять скоростью, используются ШИМ-сигналы.
Для управления шаговым двигателем в Arduino IDE существует стандартная библиотека Stepper library. Чтобы проверить работоспособность собранной схемы, можно загрузить тестовый пример stepper_oneRevolution. При правильной сборке вал двигателя начнет вращаться.
При работе с моторами Ардуино может периодически перезагружаться. Это возникает из-за того, что двигателям требуются большие токи при старте и в момент торможения. Для решения этой проблемы в плату встроены конденсаторы, диоды и другие схемы. Также для этих целей на шидле имеется раздельное питание.
Опубликовано 13.12.2013 13:10:00
В статье рассмотрим устройство Motor Shield’а, разработанного компанией Adafruit, а также научимся управлять с его помощью различными типами двигателей.
Данная плата позволит подключить одновременно к Arduino до четырех коллекторных DC двигателей, либо до двух биполярных шаговых двигателей. К тому же на плате имеются разъемы для подключения двух сервоприводов.
Компоненты для повторения (купить в Китае):
На борту данного шилда имеется две микросхемы L293D (1). L-ка позволяет управлятьслаботочными двигателями с током потребления до 600 мА на канал. На двух пятипиновыхклеммниках (2) можно насчитать 4 разъема для подключения двигателей (M1, M2, M3, M4),центральные выводы на пятипиновых клеммниках соединены с землей и служат для удобствапри подключении пятипроводных шаговый двигателей. Использование двух микросхем L293D позволяет одновременно подключить 4 моторчика постоянного тока либо 2 шаговых моторалибо два моторчика и шаговый. Для управления на прямую выводами L-ки (IN1, IN2, IN3, IN4),отвечающимими за выбор направления вращения, необходимо 4 вывода, а для двух микросхемцелых 8. Для уменьшения количества управляющих выводов в игру вступает сдвиговый регистр74НС595 (3). Благодаря регистру управление сводится с 8ми пинов к 4ем.Также, на плату выведены 2 разъема для подключения сервоприводов (4). Управлениесервоприводами стандартное с помощью библиотеки Servo.h и никак не связано с библиотекойкоторую мы будем рассматривать далее.Питание силовой части производится либо от внешнего клеммника (6) либо замыканиемджампера (5) ( питание от клеммника моторов +M соединяется с выводом Vin Arduino). При замкнутом джампере напряжение для объединенного питания должно лежать в пределах от 6 до 12Вольт
К явным минусам данного шилда можно отнести то, что он задействует практически все цифровые пины:
Выводы, отвечающие за скорость вращения двигателей
Цифровой вывод 11- DC Мотор №1 / Шаговый №1
Цифровой вывод 3- DC Мотор №2 / Шаговый №1
Цифровой вывод 5- DC Мотор №3 / Шаговый №2
Цифровой вывод 6- DC Мотор №4 / Шаговый №2
Выводы, отвечающие за выбор направления вращения двигателей:
Цифровые выводы 4, 7, 8 и 12
Выводы для управления сервоприводами (выведены на штырьки на краю платы):
Цифровой вывод 9- Сервопривод №1
Цифровой вывод 10- Сервопривод №2
В итоге незадействованными цифровыми выводами остаются только пины 2, 13 и пины интерфейса UART- 0, 1.
Однако есть выход из данной ситуации. У нас остались незадействованные аналоговые входы A0-A6, их можно использовать как цифровые. В коде они будут записываться как цифровые с 14 по 19.
Подключение к Arduino
Библиотека необходимая для работы с модулем AFMotor.h
Её необходимо распаковать и добавить в папку "libraries" в папке с Arduino IDE. Не забывайте перезагрузить среду, если на момент добавления IDEшка была открыта.
Втыкаем шилд в плату, подключаем моторы и поехали!