Содержание
Биполярные транзисторы: устройство, принцип и режимы работы, схема включения, применение, основные параметры
Основной функцией биполярного транзистора (БТ) является увеличение мощности входного электрического сигнала. Эти полупроводниковые радиокомпоненты появились, как альтернатива электровакуумных триодов, и со временем практически вытеснили их из отрасли. Справедливости ради заметим, что лампы применяются и до сих пор, но в очень и очень узком сегменте аппаратуры специального назначения. В массовой же радиотехнике используются, в основном, транзисторы – биполярные и их ближайшие «родственники» полевые.
Ключевое преимущество этих элементов состоит в миниатюрности. Электровакуумный усилитель со схожими характеристиками оказывается в несколько раз крупнее биполярного транзистора. Вследствие этого применение БТ в радиоэлектронике приводит к существенному уменьшению габаритных размеров конечной радиотехнической продукции.
Биполярным данный транзистор называется из-за того, что в физических процессах, протекающих во время его функционирования, участвуют оба типа носителей заряда – и электроны, и дырки. Это оказывает влияние на принцип управления выходным сигналом. В биполярных транзисторах выходными параметрами управляет ток, а не электрическое поле, как в полевых (униполярных).
Устройство биполярного транзистора.
Этот полупроводниковый триод состоит из 3 частей – эмиттера, коллектора и базы. Таким образом, ключевыми элементами биполярного транзистора являются два p-n-перехода, а не один, как в полевых. Эмиттер исполняет функцию генератора носителей заряда, которые формируют рабочий ток, стекающий в приёмник – коллектор. База необходима для подачи управляющего напряжения.
Если рассматривать плоскую модель БТ, то радиокомпонент представляет собой две области с p- или n-проводимостью (эмиттер и коллектор), разделённые тонким слоем полупроводника с проводимостью обратного знака (база). Полупроводниковый кристалл со стороны коллектора физически крупнее. Такое соотношение обеспечивает правильную работу биполярного транзистора.
В зависимости от типа проводимости эмиттера, коллектора и базы различают PNP- и NPN-транзисторы. В принципе, они функционируют одинаково с той лишь разницей, что к ним прикладываются напряжения разной полярности. Выбор того или иного вида БТ определяется особенностями конкретных радиотехнических устройств.
Принцип работы биполярного транзистора.
При подключении эмиттера и коллектора к источнику питания создаются почти все условия для протекания тока. Однако свободному перемещению носителей заряда препятствует база, и для устранения этой помехи на неё подаётся напряжение смещения. В базовом слое полупроводника возникают физико-химические процессы электронно-дырочной рекомбинации, в результате которой через базу начинает течь небольшой ток. В результате p-n-переходы открывают путь потоку носителей заряда от эмиттера к коллектору.
Если ток, протекающий через базу, меняется по какому-то закону, то точно так же изменяется и мощный ток между эмиттером и коллектором. Следовательно, мы получаем на выходе биполярного транзистора такой же сигнал, как и на базе, но с более высокой мощностью. В этом и состоит усилительная функция биполярного транзистора.
Режимы работы.
Существует 4 режима, в одном из которых может работать биполярный транзистор. В этот список входят следующие:
- отсечка;
- активный режим;
- насыщение;
- барьерный режим.
Существует ещё так называемый инверсный режим, но он на практике не используется и интересен только при теоретических исследованиях поведения полупроводников. Поэтому опишем подробнее только четыре первых.
1. Отсечка.
В том случае, если разность потенциалов между эмиттером и базой ниже некоторого значения (примерно 0.6 Вольт), то база-эмиттерный p-n-переход оказывается закрытым, поскольку ток базы не возникает. В связи с этим коллекторный ток не протекает по той причине, что в базовом слое отсутствуют свободные электроны. Таким образом, транзистор переходит в состояние отсечки и сигнал не усиливает. Этот режим используется в цифровых схемах, когда БТ работает как ключ в положении «разомкнуто».
2. Активный режим.
В этом режиме радиокомпонент усиливает сигнал, то есть исполняет свою основную функцию. На базу подаётся разность потенциалов, которая открывает база-эмиттерный p-n-переход. Как следствие, в транзисторе начинают протекать токи коллектора и базы. Значение коллекторного тока вычисляется как арифметическое произведение величины тока базы и коэффициента усиления.
3. Насыщение.
В этот режим биполярный транзистор входит при увеличении тока базы до некоего предельного значения, при котором p-n-переходы полностью открываются. Значение тока, протекающего через БТ при его насыщении, зависит лишь от питающего напряжения и величины нагрузки в коллекторной цепи. В данном режиме входной сигнал не усиливается, ведь коллекторный ток не воспринимает изменений тока базы. Способность транзистора к переходу в насыщение используется в цифровой технике, когда БТ играет роль ключа в замкнутом положении.
4. Барьерный режим.
Здесь транзистор работает как диод с последовательно включённым резистором. Для этого базу напрямую или через малоомное сопротивление соединяют с коллектором. В данном режиме триоды хорошо показывают себя в высокочастотных устройствах. Кроме того, использование транзистора в барьерном режиме целесообразно на реальном производстве для снижения общего количества комплектующих.
Схемы включения биполярных транзисторов.
Полупроводниковый триод может включаться в электрическую цепь по одной из трёх схем – с общим эмиттером, с общим коллектором и с общей базой. В зависимости от способа подключения различаются электрические параметры транзистора, что определяет выбор схемы в каждом конкретном случае.
При включении биполярного транзистора с общим эмиттером достигается максимальное усиление входного сигнала. Благодаря этому данная схема в усилительных каскадах применяется чаще всего.
Схема с общим коллектором по-другому называется эмиттерным повторителем. Это связано с тем, что разность потенциалов на коллекторе и эмиттере оказываются практически равными. При таком включении наблюдаются большое усиление по току, высокое входное сопротивление и совпадение фаз входного и выходного сигналов. Вследствие этого эмиттерные повторители используются в согласующих и буферных усилителях.
При включении БТ по схеме с общей базой отсутствует усиление по току, но значительным оказывается усиление по напряжению. Особенностью данного способа является малое влияние транзистора на сигналы высокой частоты. Это делает схему с общей базой предпочтительной для использования в устройствах СВЧ.
Основные параметры биполярных транзисторов:
- Максимально допустимый постоянный ток коллектора;
- Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и сопротивлении в цепи база-эмиттер;
- Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и токе базы, равным нулю;
- Максимальное напряжение коллектор-база при заданном токе коллектора и токе эмиттера, равным нулю;
- Максимально допустимое постоянное напряжение эмиттер-база при токе коллектора, равном нулю;
- Максимально допустимая постоянная мощность, рассеивающаяся на коллекторе;
- Статический коэффициент передачи тока;
- Напряжение насыщения между коллектором и эмиттером;
- Обратный ток коллектора. Ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера;
- Обратный ток эмиттера. Ток через эмиттерный переход при заданном обратном напряжении эмиттер-база и разомкнутом выводе коллектора;
- Граничная частота коэффициента передачи тока;
- Коэффициент шума;
- Емкость коллекторного перехода;
- Максимально допустимая температура перехода.
Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.
Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.
Что такое транзистор?
В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.
Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.
Устройство
Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.
Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.
Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.
Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.
Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.
Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.
Рис. 1. Строение транзисторов
На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.
Базовый принцип работы
В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.
На рисунке 2 показана схема, объясняющая принцип работы триода.
Рис. 2. Принцип работы
Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.
Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.
Работу устройства в режиме электронного ключа можно понять из рисунка 3.
Рис. 3. Триод в режиме ключа
Обозначение на схемах
Общепринятое обозначение: «VT» или «Q», после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.
На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.
Рис. 4. Пример схемы УНЧ на триодах
Виды транзисторов
По принципу действия и строению различают полупроводниковые триоды:
Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.
Полевые
Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:
- Транзисторы с управляющим p-n переходом (рис. 6).
- С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
- МДП, со структурой: металл-диэлектрик-проводник.
Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.
Детали очень чувствительны к статическому электричеству.
Схемы полевых триодов показано на рисунке 5.
Рис. 5. Полевые транзисторы Рис. 6. Фото реального полевого триода
Обратите внимание на название электродов: сток, исток и затвор.
Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.
Биполярные
Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.
Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.
Более детально о строении и принципе работы рассмотрим ниже.
Комбинированные
С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:
- биполярные транзисторы с внедрёнными и их схему резисторами;
- комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
- лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
- конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).
Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.
Как работает биполярный транзистор? Инструкция для чайников
Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.
Полупроводники.
Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.
Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».
Если, например, кремний легировать фосфором (донор), то получим полупроводник с избытком электронов (структура n-Si). При добавлении бора (акцептор) легированный кремний станет полупроводником с дырочной проводимостью (p-Si), то есть в его структуре будут преобладать положительно заряженные ионы.
Односторонняя проводимость.
Проведём мысленный эксперимент: соединим два разнотипных полупроводника с источником питания и подведём ток к нашей конструкции. Произойдёт нечто неожиданное. Если соединить отрицательный провод с кристаллом n-типа, то цепь замкнётся. Однако, когда мы поменяем полярность, то электричества в цепи не будет. Почему так происходит?
В результате соединения кристаллов с разными типами проводимости, между ними образуется область с p-n переходом. Часть электронов (носителей зарядов) из кристалла n-типа перетечёт в кристалл с дырочной проводимостью и рекомбинирует дырки в зоне контакта.
В результате возникают некомпенсированные заряды: в области n-типа – из отрицательных ионов, а в области p-типа из положительных. Разница потенциалов достигает величины от 0,3 до 0,6 В.
Связь между напряжением и концентрацией примесей можно выразить формулой:
VT – величина термодинамического напряжения, Nn и Np – концентрация соответственно электронов и дырок, а ni обозначает собственную концентрацию.
При подсоединении плюса к p-проводнику, а минуса к полупроводнику n-типа, электрические заряды преодолеют барьер, так как их движение будет направлено против электрического поля внутри p-n перехода. В данном случае переход открыт. Но если полюса поменять местами, то переход будет закрыт. Отсюда вывод: p-n переход образует одностороннюю проводимость. Это свойство используется в конструкции диодов.
От диода к транзистору.
Усложним эксперимент. Добавим ещё одну прослойку между двумя полупроводниками с одноименными структурами. Например, между кремниевыми пластинами p-типа вставим прослойку проводимости (n-Si). Не трудно догадаться, что произойдёт в зонах соприкосновения. По аналогии с вышеописанным процессом образуются области с p-n переходами, которые заблокируют движение электрических зарядов между эмиттером и коллектором, причём независимо от полярности тока.
Самое интересное произойдёт тогда, когда мы приложим незначительное напряжение к прослойке (базе). В нашем случае, подадим ток с отрицательным знаком. Как и в случае с диодом, образуется цепь эмиттер-база, по которой потечёт ток. Одновременно прослойка начнёт насыщаться дырками, что приведёт к дырочной проводимости между эмиттером и коллектором.
Посмотрите на рисунок 7. На нём видно, что положительные ионы заполнили всё пространство нашей условной конструкции и теперь ничто не мешает проводимости тока. Мы получили наглядную модель биполярного транзистора структуры p-n-p.
Рис. 7. Принцип работы триода
При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается.
Устройство может работать и в усилительном режиме.
Ток коллектора связан прямой пропорциональностью с током базы: Iк = ß*IБ, где ß – коэффициент усиления по току, IБ – ток базы.
Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Этот принцип используют для усиления сигналов.
Подавая на базу слабые импульсы, на выходе мы получаем такую же частоту усиления, но со значительно большей амплитудой (задаётся величиной напряжения, приложенного к цепочке коллектор эмиттер).
Аналогичным образом работают npn транзисторы. Меняется только полярность напряжений. Устройства со структурой n-p-n обладают прямой проводимостью. Обратную проводимость имеют транзисторы p-n-p типа.
Остаётся добавить, что полупроводниковый кристалл подобным образом реагирует на ультрафиолетовый спектр света. Включая и отключая поток фотонов, или регулируя его интенсивность, можно управлять работой триода или менять сопротивление полупроводникового резистора.
Схемы включения биполярного транзистора
Схемотехники используют следующие схемы подключения: с общей базой, общими электродами эмиттера и включение с общим коллектором (Рис. 8).
Рис. 8. Схемы подключения биполярных транзисторов
Для усилителей с общей базой характерно:
- низкое входное сопротивление, которое не превышает 100 Ом;
- хорошие температурные свойства и частотные показатели триода;
- высокое допустимое напряжение;
- требуется два разных источника для питания.
Схемы с общим эмиттером обладают:
- высокими коэффициентами усиления по току и напряжению;
- низкие показатели усиления по мощности;
- инверсией выходного напряжения относительно входного.
При таком подключении достаточно одного источника питания.
Схема подключения по принципу «общий коллектор» обеспечивает:
- большое входное и незначительное выходное сопротивление;
- низкий коэффициент напряжения по усилению ( Рисунок 9. Полевой транзистор с p-n переходом
По аналогичному принципу работают полевые триоды со встроенным и индуцированным каналом. Их схемы вы видели на рисунке 5.
Схемы включения полевого транзистора
На практике применяют схемы подключений по аналогии с биполярным триодом:
- с общим истоком – выдаёт большое усиление тока и мощности;
- схемы с общим затвором обеспечивающие низкое входное сопротивление, и незначительное усиление (имеет ограниченное применение);
- с общим стоком, работающие так же, как и схемы с общим эмиттером.
На рисунке 10 показаны различные схемы включения.
Рис. 10. Изображение схем подключения полевых триодов
Практически каждая схема способна работать при очень низких входных напряжениях.
Транзистором называется полупроводниковый преобразовательный прибор, имеющий не менее трёх выводов и способный усиливать мощность. Классификация транзисторов производится по следующим признакам:
• По материалу полупроводника – обычно германиевые или кремниевые;
• По типу проводимости областей (только биполярные транзисторы): с прямой проводимостью (p-n-p – структура) или с обратной проводимостью (n-p-n – структура);
• По принципу действия транзисторы подразделяются на биполярные и полевые (униполярные);
• По частотным свойствам;
• По мощности. Маломощные транзисторы ММ ( 3 Вт).
I – материал полупроводника: Г – германий, К – кремний.
II – тип транзистора по принципу действия: Т – биполярные, П – полевые. III – три или четыре цифры – группа транзисторов по электрическим параметрам. Первая цифра показывает частотные свойства и мощность транзистора в соответствии с ниже приведённой таблицей.
IV – модификация транзистора в 3-й группе.
Устройство биполярных транзисторов.Основой биполярного транзистора является кристалл полупроводника p-типа или n-типа проводимости, который также как и вывод от него называется базой. Диффузией примеси или сплавлением с двух сторон от базы образуются области с противоположным типом проводимости, нежели база.
Область, имеющая бóльшую площадь p-n перехода, и вывод от неё называют коллектором. Область, имеющая меньшую площадь p-n перехода, и вывод от неё называют эмиттером. p-n переход между коллектором и базой называют коллекторным переходом, а между эмиттером и базой – эмиттерным переходом.Основной особенностью устройства биполярных транзисторов является неравномерность концентрации основных носителей зарядов в эмиттере, базе и коллекторе. В эмиттере концентрация носителей заряда максимальная. В коллекторе – несколько меньше, чем в эмиттере. В базе – во много раз меньше, чем в эмиттере и коллекторе.
Принцип действия биполярных транзисторов.При работе транзистора в усилительном режиме эмиттерный переход открыт, а коллекторный – закрыт. Это достигается соответствующим включением источников питания.
Так как эмиттерный переход открыт, то через него будет протекать ток эмиттера, вызванный переходом электронов из эмиттера в базу и переходом дырок из базы в эмиттер. Следовательно, ток эмиттера будет иметь две составляющие – электронную и дырочную. Основное соотношение токов в транзисторе: Iэ = Iк + Iбα – коэффициент передачи тока транзистора или коэффициент усиления по току: Iк = α ∙ IэДырки из коллектора как неосновные носители зарядов будут переходить в базу, образуя обратный ток коллектора Iкбо. Iк = α ∙ Iэ + Iкбо
Из трёх выводов транзистора на один подаётся входной сигнал, со второго – снимается выходной сигнал, а третий вывод является общим для входной и выходной цепи.