Содержание
Очень часто пользователей световых электроприборов и СБТ интересует: «Как без трансформатора из 220 вольт получить 12в или другое низкое напряжение?». Обычно этим вопросом задаются владельцы электронной техники и аппаратуры, работающей от источников питания на понижающем сетевом трансформаторе. Это тем более актуально, поскольку весогабаритные показатели блока питания (БП) нередко превосходят аналогичные параметры запитываемого гаджета или стационарного устройства.
Основные способы понижения
Например, «ходовой» трансформатор частоты 50 Гц с относительно небольшой мощностью 200 Вт, выполненный на трансформаторном железе, весит более 1 килограмма и стоит от 9–18 $. Это не только делает блок питания громоздким, но и значительно удорожает стоимость девайса.
На трансформаторах реализована классическая схема понижения и последующего преобразования переменного напряжения (АС) в постоянное (DС) по цепи «трансформатор → выпрямитель → стабилизатор».
Существует более сложная схема построения «выпрямитель → импульсный генератор → трансформатор → выпрямитель → стабилизатор» импульсного блока питания, обладающая меньшими габаритами.
Преимуществом приведенных схем является гальваническая развязка. При замыкании цепи нагрузки на «ноль» она предотвращает выход из строя аппаратуры и снижает опасность поражения человека электрическим током.
Однако самыми миниатюрными источниками питания 12 В являются бестрансформаторные блоки питания, в которых производится:
- С помощью балластного конденсатора понижение напряжения.
- При помощи балластного резистора гасится избыточное напряжение.
- Нерегулируемым автотрансформатором снимается требуемое напряжение и сглаживается дросселем.
Балластный конденсатор
Сегодня весьма популярным среди радиолюбителей средством снижения напряжения стала установка гасящего конденсатора. Этот универсальный способ повсеместно используется для питания светодиодных ламп и в зарядных устройствах маломощных аккумуляторных батарей. Установка радиоэлемента в разрыв сети питания диодного моста позволяет получить требуемый ток в электрической цепи без рассеивания значительной мощности на тепло.
Схема простого конденсаторного (бестрансформаторного) блока питания с минимальным количеством радиоэлементов и напряжением 12 В мощностью 0,18 Вт выглядит следующим образом:
В качестве Р1 используется любое устройство, рассчитанное на постоянное напряжение 12 В с рабочим амперажом ≤ 0,15А. Конденсатор С1 – балластный, зашунтирован резистором R1. Он предназначен для предотвращения поражения электрическим током от накопленного на пластинах конденсатора С1 заряда. Со своим большим сопротивлением в сотни кОм резистор R1 не влияет на прохождение тока через емкость во время рабочей сессии.
Однако после завершения работы блока питания в течение времени , измеряемого несколькими секундами, через резистор проходит ток разряда обкладок конденсатора. Электролитический конденсатор С2, включенный параллельно нагрузке после диодного моста, сглаживает пульсации выпрямленного тока.
Заметно снизит зависимость выходного напряжения от сопротивления нагрузки БП симбиоз выпрямителя и параметрического стабилизатора с регулирующим элементом. Осуществляется такая доработка впаиванием параллельно P1 стабилитрона на 12 вольт.
При помощи резистора
Способ подходит для запитки слаботочной нагрузки, например, светодиода или маломощного LED-светильника. Основной недостаток резистивной схемы – низкий КПД по причине рассеивания большого количества активной мощности, затрачиваемой на нагрев резистора. В самом простом варианте БП представляет собой делитель напряжения на резисторах, установленный после диодного выпрямителя, с нижнего плеча которого снимается напряжение.
Стабилизация осуществляется посредством изменения сопротивления одного из плеч делителя: номиналы резисторов подбираются таким образом, чтобы понизить выходное напряжение до приемлемых значений.
Автотрансформатор или дроссель с подобной логикой намотки
В автотрансформаторе отсутствует вторичная обмотка: выходное напряжение снимается с одной единственной обмотки на тороидальном магнитопроводе, которая одновременно используется для подачи сетевого напряжения 220 В, 50 Гц.
Принцип действия аналогичен ЛАТР, только снимаемое с витков напряжение имеет определенную фиксированную величину. Поэтому замена силового трансформатора на автотрансформатор повышает КПД блока питания, заметно снижает размеры и вес девайса (при прочих равных условиях весогабаритные характеристики трансформатора в 1,5 раза больше заменяющего изделия).
Схема автотрансформатора с фиксированным напряжением U2.
Однако нерегулируемый автотрансформатор имеет существенный недостаток: он не защищает от бросков напряжения и наведенных в сети импульсов. Низкочастотные (НЧ) и высокочастотные (ВЧ) пульсации, сетевые помехи и паразитные гармоники значительно снизятся, если в выходную цепь установить дроссель. В тандеме с автотрансформатором используют дроссель с высокой индуктивностью ≤ 0,5–1,0 ГН, устанавливаемый последовательно с нагрузкой.
Индуктивный элемент накапливает в магнитном поле катушки энергию питающей сети, а затем отдает в нагрузку. Дроссель в электрической цепи противодействует изменению тока в электрической цепи. При резком падении катушка поддерживает протекающий ток, а при резком повышении ограничивает, не давая быстро возрасти. Компактные дроссели переменного тока применяются в бустерах энергосберегающих ламп и LED-драйверах, питающих светодиодные светильники.
Технические требования к конденсатору
Для бестрансформаторного БП подойдет конденсатор, рассчитанный на амплитудное (или большее) значение переменного напряжения. Если действующее значение напряжения равно 220 В, то амплитудное рассчитывается по формуле 220 * = 311 В (номинальное 400 В). Конденсаторы лучше выбрать плёночные, оптимально подходят емкостные элементы серии К73-17.
Бестрансформаторное электропитание: возможные схематические решения
Микросхема линейного стабилизатора
Можно своими руками собрать простой драйвер (источник стабилизированного тока) на недорогой (0,3 $) микросхеме линейного стабилизатора LM317АMDT. На вход преобразователя DС-AC подается напряжение сети 220 В, 50 Гц.
Стабилизированное напряжение 12 В получается на ИМС с минимальным набором элементов в обвязке (в самом простом варианте используется только R1 и R2). Подбирая номинал резисторов, можно регулировать ток в нагрузке, при суммарном токе светодиодов до 0,3 А микросхема отлично работает без радиатора. Ниже приведена типовая схема устройства на микросхеме LM317:
Зарядное устройство
Самым бюджетным вариантом, безусловно, считается использование зарядного устройства (ЗУ) от сотового телефона. Плата зарядника имеет совсем небольшие габариты и подойдет для питания 12 В гаджета с мощностью ≤ P ном. блока питания. Необходимо только заменить в ней однополупериодный выпрямитель на выпрямитель с удвоенным напряжением (добавляется по одному диоду и конденсатору). После модернизации получаем искомые 12 вольт с током 0.5А и полноценной развязкой от сети.
В качестве альтернативы, не требующей вмешательства в конструкцию, можно к выходу ЗУ через переходник подключается повышающий DС-DС преобразователь напряжения (например, 2-х амперный, размером 30мм х 17мм х 14мм, стоимостью 1$) с USB-разъемом. Требуется только выставить подстроечным резистором требуемое напряжение 12 В и подключить преобразователь к гаджету или стационарному электроприемному устройству.
Для чего может использоваться напряжение 12 или 24 вольт в быту
В бытовых условиях зачастую используются источники электропитания низкого напряжения. От напряжения 12 или 24В постоянного тока DС запитываются переносные/стационарные электротехнические и электронные устройства, а также некоторые осветительные приборы:
- аккумуляторные электродрели, шуруповерты и электропилы;
- стационарные насосы для полива огородов;
- аудио-видеотехника и радиоэлектронная аппаратура;
- системы видеонаблюдения и сигнализации;
- батареечные радиоприемники и плееры;
- ноутбуки (нетбуки) и планшеты;
- галогенные и LED-лампы, светодиодные ленты;
- портативные ультрафиолетовые облучатели и портативное медицинское оборудование;
- паяльные станции и электропаяльники;
- зарядные устройства мобильных телефонов и повербанков;
- слаботочные сети электропитания в местах с повышенной влажностью и системы ландшафтного освещения;
- детские игрушки, елочные гирлянды, помпы аквариумов;
- различные самодельные радиоэлектронные устройства, в том числе на популярной платформе Arduino.
Большинство устройств работает от батареек и Li-ion аккумуляторов, но использование товарных позиций не всегда оправдано с точки зрения эксплуатационных затрат. Заряжать аккумуляторные батареи можно 300–1500 раз, но гальванические элементы с большой энергоемкостью и низким током саморазряда стоят дорого. Заметно дешевле обойдется приобретение батареек, особенно солевых и щелочных, но такие элементы придётся часто менять. Тем более, что для обеспечения подающего напряжения 12 В понадобится 8 последовательно соединенных пальчиковых батареек (типа АА или ААА) или 1,5-вольтовых «таблеток» в корпусе типа 27А.
Поэтому в местах с доступом к бытовой сети 220 В 50 Гц для питания электроприемников с амперажом больше 0,1 А рациональнее использовать блок питания.
Прежде, чем приступить к расчёту простого бестрансформаторного блока питания с гасящим конденсатором, давайте определимся с ориентацией:
1. Мы не извращенцы, мы нормальные дядьки и приличные барышни! А с теми, звездонутыми током из розетки. которые находят в этом не только минусы, но и плюсы. а также прочими ведьмами и чародеями мы не якшаемся и якшаться не станем.
2. Это не то чтобы мы скупердяи какие-то. Но люди бережливые – жадные с умом и с пользой, а на безвременную кончину электрооборудования, будь то мыслящая машина, или прибор какой измерительный, нам смотреть неприятно и западло.
Ладно, с этим понятно! А какие условия надо выполнить при остром желании совокупить электронное устройство с бестрансформаторным источником питания?
Пожалуйста:
– Полная автономность питаемого аппарата, т.е. к нему не должны подключаться никакие внешние устройства ни по входу, ни по выходу, ни по каким-либо другим местам.
– Диэлектрический (непроводящий) корпус и такие же ручки управления как у самого блока питания, так и у запитываемого от него устройства.
– Сосредоточенный контроль за любым движением шаловливых ручонок в процессе настройки источника. Про измерительные приборы с питанием от сети – забыть. Схема простая, поверьте – заработает и без всяких осциллографов.
В самом распространённом виде схема простого бестрансформаторного блока питания имеет вид, показанный на рис.1.
Рис.1
Для ограничения броска тока при подключении блока к сети последовательно с конденсатором С1 и выпрямительным мостом Br1 включён резистор R2, а для разрядки конденсатора после отключения – параллельно ему резистор R1.
Бестрансформаторный источник питания в общем случае представляет собой симбиоз выпрямителя и параметрического стабилизатора. Конденсатор С1 для переменного тока представляет собой ёмкостное (реактивное, т.е. не потребляющее энергию) сопротивление Хс, величина которого определяется по формуле:
,
где F – частота сети (50Гц); С-ёмкость конденсатора С1.
Тогда ток, втекающий в источник, определяется, как:
,
где Uc – напряжение сети (220 В); Uст – выходное напряжение, соответствующее напряжению пробоя стабилитрона.
Номинал резистора R2 выбирается исходя из величины ≈ 0,025Xс.
Нормальным режимом работы приведённого блока питания является режим, при котором стабилитрон находится в режиме обратно-смещённого пробоя (режим стабилизации), благодаря чему напряжение на выходе источника поддерживается с заданной точностью в широком диапазоне выходных токов нагрузки.
Ясен жупел, что для поддержания этого режима необходимо удерживать ток, протекающий через стабилитрон, в диапазоне допустимых для данного полупроводника величин: Iст.min
А поскольку Iвх= Iст+Iн (см. Рис.1), то методом простого дедуктивного электроанализа делаем глобальный вывод – номинал конденсатора С1 следует выбирать из соображений величины входного тока Iвх= Iн.макс+Iст.мин , где Iн.макс – максимальный ток на выходе блока питания при заданном выходном напряжении, а Iст.мин – минимальный ток стабилизации стабилитрона, указанный в характеристиках полупроводника.
Минимальное значение ёмкости сглаживающего конденсатора С2 в двухполупериодных выпрямителях принято рассчитывать исходя из величины 1МкФ на каждый миллиампер тока, потребляемого нагрузкой, оптимальное – в 5-10 раз выше.
Краткий теоретический экскурс проведён, пора переходить к практической стороне вопроса:
ТАБЛИЦА РАСЧЁТА НОМИНАЛОВ ЭЛЕМЕНТОВ БЕСТРАНСФОРМАТОРНОГО БЛОКА ПИТАНИЯ.
Приведённая на Рис.1 схема обладает одной интересной особенностью. При увеличении мощности, отдаваемой в нагрузку, пропорционально снижается ток, протекающий через стабилитрон, что приводит к соответствующему росту КПД блока питания. Т.е. при максимальном токе нагрузки собственное потребление схемы будет в основном определяться мощностью, рассеиваемой на защитном резисторе R2.
Конденсатор C1 необходимо применять на напряжение не менее 400 Вольт, диодный мост на такое же напряжение, стабилитрон следует выбирать, исходя из необходимого напряжения стабилизации и максимально допустимого тока, процентов на 20-25 превышающего значение Iст.max, посчитанное таблицей.
А нажав на стрелку "назад" внизу страницы, можно познакомиться и с некоторым количеством иных схемотехнических решений, связанных с реализацией бестрансформаторных источников питания.
Понадобился мне блок питания для самодельной мини-дрели, сделанной из моторчика на 17 Вольт. Пересмотрел много схем различных БП, но во всех использовался трансформатор, которого у меня нету, а покупать как-то неохота. Тогда решил поступить проще и собрать бестрансформаторный блок питания на данное напряжение – 17 Вольт. Схема довольно простая, на такой готовый блок питания нужно подавать 220 вольт переменного напряжения, короче питать схему от розетки, а на выходе мы получаем 17 вольт постоянного напряжения. Обычно источники питания такого типа применяют во всяких небольших бытовых вещах, например в фонарике с аккумулятором, в качестве зарядного, где нужен небольшой ток, до 150 mA или в электробритвах.
Принципиальная схема бестрансформаторного блока питания
Итак, детали для схемы. Вот так выглядят высоковольтные металлопленочные конденсаторы (те что красные), и слева от них электролитический конденсатор на 100 мкФ. Вместо микросхемы 78l08 можно использовать такие стабилизаторы напряжения, как КР1157ЕН5А (78l08) или КР1157ЕН5А (7905). Если отсутствует выпрямительный диод 1N4007, то его можно заменить на 1N5399 или 1N5408, которые рассчитаны на более высокий ток. Серый кружок на диоде обозначает его катод. Резистор R1 взял на 5W, а R2 – на 2W, для страховки, хотя оба можно было применять и на 0,5 Вт. Стабилитрон BZV85C24 (1N4749), рассчитан на мощность 1,5 W, и на напряжение до 24 вольт, заменить его можно отечественным 2С524А. Этот бестрансформаторный БП собрал без регулировки выходного напряжения, но если вы хотите организовать такую функцию, то просто подключите к выводу 2 микросхемы 78L08 переменный резистор примерно на 1 кОм, а второй его вывод – к минусу схемы. Плата к схеме бестрансформаторного блока питания конечно есть, формат лэй, скачать можно тут. Думаю вы поняли, что диоды без пометки – это 1n4007. Готовую конструкцию нужно обязательно поместить в пластиковый корпус, из-за того что включенная в сеть схема находиться под напряжением 220 вольт и прикасаться к ней ни в коем случае нельзя! На этих фото вы можете видеть напряжение на входе, то есть напряжение в розетке, и сколько вольт мы получаем на выходе БП. Видео работы схемы бестрансформаторного БП
Большим плюсом этой схемы можно считать очень скромные размеры готового устройства, ведь благодаря отсутствию трансформатора этот БП можно сделать маленьким, и относительно недорогая стоимость деталей для схемы. Минусом схемы можно считать то, что есть опасность случайно дотронуться к работающему источнику и получить удар током. Автор статьи – egoruch72. Обсудить статью БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ По мотивам известной схемы блока питания с регулировкой тока и напряжения – полезная доработка. |