Меню Рубрики

Братья кюри пьезоэлектрический эффект

Содержание

В 1880 году братья Жак и Пьер Кюри обнаружили, что при сжатии или растягивании некоторых естественных кристаллов, на гранях кристаллов возникали электрические заряды. Братья назвали это явление «пьезоэлектричеством» (греческое слова «пьезо» обозначает «давить»), а сами такие кристаллы они назвали пьезоэлектрическими кристаллами.

Как выяснилось, пьезоэлектрическим эффектом обладают кристаллы турмалина, кварца и другие естественные кристаллы, а также многие искусственно выращиваемые кристаллы. Такие кристаллы регулярно пополняют список уже известных пьезоэлектрических кристаллов.

При растягивании или сжатии в нужном направлении такого пьезоэлектрического кристалла, на некоторых из его граней возникают разноименные электрические заряды, обладающие небольшой разностью потенциалов.

Если же поместить на эти грани соединенные между собой электроды, то в момент сжатия или растяжения кристалла, в образованной электродами цепи возникнет короткий электрический импульс. Это и будет проявлением пьезоэффекта . При постоянном же давлении, такого импульса не возникнет.

Присущие этим кристаллам свойства позволяют изготавливать точные и чувствительные приборы.

Пьезоэлектрический кристалл обладает высокой упругостью. Когда деформирующее усилие снимается, кристалл без инерции возвращаются к своему первоначальному объему и форме. Стоит снова приложить усилие или же изменить уже приложенное, и он сразу отзовется новым импульсом тока. Это лучший регистратор очень слабых механических колебаний, доходящих до него. Сила тока в цепи колеблющегося кристалла мала, и это было камнем преткновения в момент открытия пьезоэффекта братьями Кюри.

В современной же технике это не является препятствием, ведь ток можно усилить в миллионы раз. Теперь известны некоторые кристаллы, обладающие весьма значительным пьезоэффектом. А получаемый от них ток может передаваться по проводам на большие расстояния даже без предварительного усиления.

Пьезоэлектрические кристаллы нашли применение в ультразвуковой дефектоскопии, для обнаружения дефектов внутри металлических изделий. В электромеханических преобразователях для стабилизации радиочастоты, в фильтрах многоканальной телефонной связи, когда по одному проводу одновременно ведется несколько разговоров, в датчиках давления и усиления, в адаптерах, при ультразвуковой пайке – во многих технических сферах пьезоэлектрические кристаллы заняли свое незыблемое положение.

Важным свойством пьезоэлектрических кристаллов оказался и обратный пьезоэффект . Если на определенные грани кристалла приложить заряды противоположных знаков, то сами кристаллы будут при этом деформироваться. Если наложить на кристалл электрические колебания звуковой частоты, он начнет колебаться с этой же частотой, а в окружающей воздушной среде возбудятся звуковые волны. Так один и тот же кристалл может выступать как в роли микрофона, так и в роли динамика.

Еще одна особенность пьезоэлектрических кристаллов сделала их неотъемлемой частью современной радиотехники. Обладая собственной частотой механических колебаний, кристалл начинает колебаться особенно сильно в момент совпадения с ней частоты подводимого переменного напряжения.

Это проявление электромеханического резонанса, на основе которого созданы пьезоэлектрические стабилизаторы, благодаря которым поддерживается постоянство частоты в генераторах незатухающих колебаний.

Аналогичным образом они реагируют и на механические колебания, частота которых совпадает с частотой собственных колебаний пьезокристалла. Это позволяет создавать акустические приборы, выделяющие из всех доходящих до них звуков только те, которые нужны для тех или иных целей.

Читайте также:  Виды проверки знаний по технике безопасности

Для пьезоприборов не берут целых кристаллов. Кристаллы распиливают на пласты, строго ориентированные относительно их кристаллографических осей, из этих пластов затем изготавливают прямоугольные или круглые пластинки, которые потом шлифуют под определенный размер. Толщина пластинок тщательно выдерживается, поскольку от нее зависит резонансная частота колебаний. Одна или несколько пластинок, соединенных с металлическими слоями на двух широких поверхностях, называются пьезоэлементами .

В 19 веке в 1880 году братья Кюри проводили эксперимент, во время которого происходило образование электрического разряда, когда на кварц или другие виды кристаллов оказывалось давление. В дальнейшем это явление стало известно, как пьезоэлектрический эффект, поскольку греческое слово «пьезо» в переводе на русский язык означает сжатие. Некоторое время спустя, те же ученые открыли явление обратного пьезоэлектрического эффекта, представляющего собой механическую деформацию кристалла под действием электрического поля. Данное явление используется во многих современных электронных устройствах, особенно там, где необходимо распознавание и преобразование звуковых сигналов.

Физические свойства пьезоэффекта

В ходе исследований было установлено, что пьезоэлектрический эффект присущ кварцу, турмалину и другим кристаллам естественного и искусственного происхождения. Перечень таких материалов постоянно растет. Если любой из этих кристаллов сжать или растянуть в определенном направлении, на отдельных гранях появятся электрические заряды с положительным и отрицательным значением. Разность потенциалов таких зарядов будет незначительной.

Для того чтобы понять природу пьезоэффекта, необходимо соединить электроды между собой и разместить их на гранях кристалла. При кратковременном сжатии или растяжении в цепи, образованной электродами, можно заметить образование короткого электрического импульса. Именно он является электрическим и физическим проявлением пьезоэффекта. Если же кристалл испытывает постоянное давление, в этом случае импульс не появится. Данное свойство кристаллических материалов широко используется при изготовлении точных чувствительных приборов.

Одним из качеств пьезоэлектрических кристаллов является их высокая упругость. По окончании действия деформирующего усилия, эти материалы без всякой инерции принимают свою изначальную форму и объем. Если же прикладывается новое усилие или изменяется приложенное ранее, в этом случае мгновенно образуется еще один токовый импульс. Данное свойство, известное как прямой и обратный пьезоэффект, успешно используется в устройствах, регистрирующих совсем слабые механические колебания.

В самом начале открытия пьезоэффекта решение такой задачи было невозможно из-за слишком незначительной силы тока в колеблющейся кристаллической цепи. В современных условиях ток может быть усилен многократно, а некоторые виды кристаллов имеют довольно высокий пьезоэффект. Ток, полученный от них, не требует дополнительного усиления и свободно передается по проводам на значительные расстояния.

Прямой и обратный пьезоэффект

Все кристаллы, рассмотренные выше, обладают качествами прямого и обратного пьезоэффекта. Данное свойство одновременно присутствует во всех подобных материалах – с моно- и поликристаллической структурой. Обязательным условием является их предварительная поляризация в процессе кристаллизации воздействием сильного электрического поля.

Для того чтобы понять, как действует прямой пьезоэффект, необходимо кристалл или керамический материал расположить между металлическими пластинами. Генерация электрического заряда происходит в результате приложенного механического усилия – сжатия или растяжения.

Читайте также:  Metabo powermaxx bs quick pro 600157500

Величина полной энергии, полученной от внешней механической силы, составит сумму энергий упругой деформации и заряда емкости элемента. Поскольку пьезоэлектрический эффект носит обратимый характер, возникает специфическая реакция. Прямой пьезоэффект приводит к возникновению электрического напряжения, которое в свою очередь, под влиянием обратного эффекта вызывает деформацию и механические напряжения, оказывающие противодействие внешним силам. За счет этого жесткость элемента будет увеличиваться. В случае отсутствия электрического напряжения, обратный пьезоэффект тоже будет отсутствовать, а жесткость пьезоэлемента уменьшится.

Таким образом, обратный пьезоэлектрический эффект заключается в механической деформации материала – расширении или сжатии под действием приложенного к нему напряжения. Данные элементы выполняют функцию своеобразного мини-аккумулятора и применяются в гидролокаторах, микрофонах, датчиках давления, других чувствительных приборах и устройствах. Свойства обратного эффекта широко используются в миниатюрных акустических устройствах мобильных телефонов, в гидроакустических и медицинских ультразвуковых датчиках.

Виды пьезоэлектрических материалов

Основным свойством таких материалов является возможность получения электроэнергии за счет сжатия или растяжения, то есть, деформации.

Все материалы, используемые на практике, классифицируются следующим образом:

  • Кристаллы. Включают в себя кварц и другие виды природных образований.
  • Керамические изделия. Представляют собой группу искусственных материалов. Типичными представителями являются цирконат-титанат свинца – ЦТС, а также титанат бария и ниобат лития. Они обладают более ярким пьезоэлектрическим эффектом по сравнению с природными материалами.

Если сравнивать ЦТС и кварц, становится заметно, что при одной и той же деформации, искусственный элемент вырабатывает более высокое напряжение. Когда на него влияет обратный пьезоэлектрический эффект он соответственно сильнее деформируется, когда к нему приложено такое же напряжение, как и к кварцу. Благодаря своим качествам, искусственные материалы получили широкое распространение в конструкциях керамических конденсаторов, ультразвуковых преобразователей и прочих электронных устройств.

Использование пьезоэффекта на практике

Пьезоэлектрические свойства кристаллов и материалов искусственного происхождения успешно применяются в различных областях. В качестве примеров можно привести ультразвуковую дефектоскопию, позволяющую выявлять дефекты внутри металлических конструкций, электромеханические преобразователи, стабилизирующие радиочастоты, различные датчики и другие приборы.

В электротехнике широко используется обратный пьезоэлектрический эффект, связанный с деформацией кристалла под действием приложенного напряжения. В случае наложения на кристалл электрических колебаний с частотой звука, в нем возникнут колебания такой же частоты с выделением в окружающее пространство звуковых волн. Таким образом, один и тот же кристалл может быть использован не только как микрофон, но и как динамик.

Все пьезоэлектрики имеют собственную частоту механических колебаний. Они проявляются с наибольшей силой, когда совпадают с частотой подведенного напряжения. Подобное наложение колебаний известно, как электромеханический резонанс. Данное свойство позволило создать различные виды пьезоэлектрических стабилизаторов, поддерживающих постоянную частоту в генераторах незатухающих колебаний.

Точно такая же реакция наблюдается при действии механических колебаний с частотой, совпадающей с собственными колебаниями кристалла. Подобный эффект и его применение позволил создать акустические приборы, способные выделять из всей массы звуков лишь необходимые для конкретных целей.

Читайте также:  Ветвь это в электротехнике

При изготовлении приборов и устройств цельные кристаллы не используются. Они распиливаются на пластинки, имеющие строгую ориентацию с их кристаллографическими осями. Пластинки изготавливаются определенной толщины, в зависимости от того, какую резонансную частоту колебаний нужно получить. Они соединяются с металлическими слоями, и в результате происходит рождение готового пьезоэлемента.

Пьезоэлектрический эффект был открыт братьями Кюри в 1880г. Пьезоэффект бывает прямой и обратный.

Прямой пьезоэффект – это процесс образования равных, но противоположных по знаку электрических зарядов на противоположных гранях некоторых кристаллических тел, называемых пьезоэлектриками, при давлении на эти тела.

Если изменить направление деформации, т.е. не сжимать, а растягивать пьезоэлектрик, то заряды на гранях изменят знак на обратный. К пьезоэлектрикам относятся кварц, сегнетова соль, титанат бария и т.д.

Обратный пьезоэффект – это процесс сжатия или расширения пьезоэлектрика под действием электрического поля в зависимости от направления вектора напряженности поля.

Для практических целей применяют пьезоэлектрики различной формы: прямоугольные или круглые пластинки, цилиндры, кольца. Пьезоэлемент помещают между металлическими обкладками или наносят металлические пленки на противоположные грани пьезоэлемента. Таким образом получается конденсатор с диэлектриком из пьезоэлектрика.

Если к такому пьезоэлементу подвести переменное напряжение, то пьезоэлемент за счет обратного пьезоэффекта будет сжиматься и расширяться, т.е. совершать механические колебания. В этом случае энергия электрических колебаний превращается в энергию механических колебаний с частотой, равной частоте приложенного переменного напряжения. Так как пьезоэлемент обладает собственной частотой механических колебаний, то возможно явление резонанса, когда частота приложенного напряжения совпадает с собственной частотой колебаний пластинки. При этом получается максимальная амплитуда колебаний пластинки пьезоэлемента.

Если на пьезоэлемент воздействовать механически с некоторой частотой, то возникает переменное напряжение той же частоты. В этом случае механическая энергия преобразуется в электрическую, и пьезоэлемент становится генератором переменной ЭДС. Таким образом, можно сказать, что пьезоэлемент является колебательной системой с электромеханическими колебаниями.

На основе пьезоэффекта работает кварцевый резонатор, содержащий кварцевый элемент, электроды и кварцедержатели, помещенные в герметичный металлический или стеклянный баллон.

Эквивалентная схема кварцевого резонатора:

L, С, R – параметры кварцевого элемента. Индуктивность L отражает инерционные свойства кварцевой пластики, С – характеризует ее упругие свойства и активное сопротивление, R – сопротивление потерь. Cо – паразитная межэлектродная емкость.

Как видно из эквивалентной схемы, кварцевый резонатор имеет два резонанса: последовательный (частота которого зависит от параметров резонатора L и С) и параллельный (частота которого зависит от паразитной межэлектродной емкости Со). Частота последовательного резонанса является более стабильной, чем частота параллельного резонанса. На практике используют оба вида резонанса.

Кварцевые резонаторы успешно работают в полосе частот от 70 Гц до десятков МГц. На их основе работают кварцевые генераторы, обеспечивающие высокую точность и стабильность частоты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *