Меню Рубрики

Датчик температуры принципиальная схема

Содержание

Все приборы, в которых используются проводники, требуют соблюдения определенного температурного режима. Очень часто, при повышении тока и напряжения, такие устройства перестают работать. Для того, чтобы избежать неприятных ситуаций, существует схема датчика температуры, применяемая в составе многих электронных приборов и устройств.

Использование термодатчика

Основной функцией датчика является своевременное обнаружение отклонений от температурного режима. При наступлении критического перегрева, термодатчик подает световой сигнал. Действие прибора основано на сравнении нормального напряжения с повышенным напряжением, возникающим при увеличении температуры.

Устройство оборудовано инвертирующим входом, соединенным через анод с кремниевым диодом, непосредственно выполняющим функцию термодатчика. Кроме того, здесь имеется неинвертирующий вход, подключенный к переменному резистору. Он предназначен для установки температурного порога, когда происходит срабатывание сигнализатора.

В случае изменения температуры в сторону увеличения, происходит падение напряжения на диоде. В этом случае, значение температурного коэффициента сопротивления будет отрицательным. Физические свойства датчика позволяют обнаруживать даже незначительные колебания температуры.

Дополнительные компоненты и схема датчика

Кроме основных диодных устройств, схема датчика температуры включает в себя ряд дополнительных элементов. Прежде всего, это конденсатор, позволяющий защитить прибор от посторонних влияний. Дело в том, что операционный усилитель обладает повышенной чувствительностью на воздействие переменных электромагнитных полей. Конденсатор снимает эту зависимость с помощью наведения отрицательной обратной связи.

При участии транзистора и стабилитрона образуется опорное стабилизированное напряжение. Здесь используются резисторы с повышенным классом точности при низком значении температурного коэффициента сопротивления. Тем самым, вся схема приобретает дополнительную стабильность. В случае возможных значительных изменений температурного режима, прецизионные резисторы можно не применять. Они используются только для контроля небольших перегревов.

При расположении датчика на дальнем расстоянии от сигнализатора, они должны соединяться между собой двухжильным экранированным проводом. При этом, выводы датчика не должны касаться металлических частей устройства, находящегося под контролем.

Регулятор оборотов вентилятора с датчиком температуры

Огромное количество электрических приборов, используемых в быту и промышленности, основывают свою работу на определении уровня температуры окружающей среды. Измерительный элемент в них представляет собой датчик температуры, срабатывающий при нагревании или охлаждении до установленного уровня. Их можно приобрести в большинстве магазинов, ими комплектуются духовки, контроллеры и прочие устройства, но гораздо интереснее изготовить терморегулятор своими руками.

Пример простого терморегулятора

Далее мы рассмотрим принцип действия и варианты изготовления такой самоделки.

Немного теории

Любой терморегулятор конструктивно включает в себя три основных блока:

Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:

Рис. 1. Датчик из полуплеча резисторов

На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.

На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.

Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:

Рис. 2. Принципиальная схема терморегулятора

Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.

При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов происходит в соответствии с заданной логикой.

Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.

Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:

  • для контроля работы электрического отопления по температурным показаниям в помещении;
  • для установки уровня температуры в самодельном инкубаторе;
  • при подключении теплого пола для контроля его работы;
  • для установки температурного диапазона работы двигателя, с принудительным охлаждением или отключением системы при достижении граничного значения температуры;
  • для паяльных станций или ручных паяльников;
  • в системах охлаждения и холодильном оборудовании с логикой снижения температуры в определенных пределах;
  • в духовках, печах как бытового, так и промышленного назначения.

Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.

Читайте также:  Герметизация воздуховодов вентиляции практические советы

Обзор схем

В зависимости от типа элементов, входящих в состав терморегулятора, различают механические и цифровые терморегуляторы. Работа первых основана на срабатывании реле, вторые имеют электронный блок, управляющий процессами. Примеры работы нескольких схем рассмотрим далее.

Рис. 3. Схема терморегулятора №1

На приведенной схеме измерение происходит за счет резисторов R1 и R2, при температурных колебаниях переменный резистор R2 изменит величину падения напряжения. После чего через усилитель терморегулятора, представленный парой транзисторов, начнется протекание электротока через катушку реле K1.

Когда величина тока в соленоиде создаст магнитный поток достаточной силы, сердечник притянется и переключит контакты в другое положение. Недостатком такого терморегулятора является наличие магнитопроводящих частей, которые из-за гистерезиса вносят дополнительную поправку на температуру помимо измерительного органа.

Рис. 4. Схема терморегулятора №2

Данный терморегулятор, в отличии от механического термостата, не использует подключение реле, поэтому является более точным. Его применение оправдано в тех ситуациях, когда несколько градусов могут сыграть весомую роль, к примеру, при контроле температуры нагрева двигателя или в инкубаторе.

Здесь изменение температурного режима фиксируется резистором R5, благодаря которому терморегулятор изменяет электрические параметры работы. Для сравнения и усиления разницы поступающего с полуплеч электрического параметра применяется микросхема К140УД7.

Для контроля нагрузки в схеме устанавливается тиристор VS1, в данном примере терморегулятора ограничение составляет 150Вт, но при желании может подбираться и другой параметр. Но следует учитывать, что эксплуатация тиристора в качестве ключа приводит к его нагреванию, поэтому с увеличением мощности необходимо установить радиатор для лучшей теплоотдачи.

Создаем простой терморегулятор

При ремонте бытовой электротехники вы могли сталкиваться с ситуацией, когда со строя выходил терморегулятор. Хоть это и небольшая микросхема, устанавливаемая для контроля величины нагрева или охлаждения чего-либо.

Увы, стоимость такого элемента заводского изготовления довольно высока, поэтому куда выгоднее собрать терморегулятор самому. Схема достаточно простого самодельного терморегулятора приведена на рисунке ниже.

Рис. 5. Схема простейшего терморегулятора

Для его изготовления вам понадобится:

  • понижающий трансформатор с 220 на 12 В;
  • шесть диодов (в рассматриваемом примере используются IN4007);
  • конденсаторы на 47 мкФ, 1 мФ и 2 мФ;
  • микросхема для стабилизатора на 5В;
  • транзистор (в рассматриваемом примере это КТ814А);
  • стабилитрон с регулируемым параметром (TL431);
  • резистивные элементы на 4,7; 160, 150 и 910 кОм;
  • резистор с изменяемым сопротивлением на 150 кОм;
  • термозависимый резистор 50 кОм;
  • светодиод;
  • электромагнитное реле 100 мА с питающим напряжением 12В (в рассматриваемом примере используется автомобильный вариант);
  • кнопка и корпус.

Процесс изготовления состоит из таких этапов:

  • При помощи паяльника соберите вышеперечисленные детали на печатную плату, как показано на схеме выше.
  • После этого выведите измерительный орган для терморегулятора на открытое пространство, чтобы установить в нужную локацию.

Рис. 6. Выведите измерительный элемент

  • Установите переменный резистор на жесткий каркас и нанесите градуировку температурных режимов для настройки прибора.

Рис. 7. Установите регулятор на каркас и нанесите градуировку

  • На клеммник подключите шнур питания.

Подключите питающий шнур к клеммнику

В данном случае клеммник взят со старого прибора, располагавшегося в корпусе.

  • Подключите все отдельно размещенные элементы к плате и закройте корпусом.

После сборки терморегулятора его можно установить в любое место, к примеру, для обогрева и подключить в цепь питания электрического котла. В случае, когда радиаторы отопления нагреют помещение до установленной температуры, контакты реле разорвут цепь и прекратят электроснабжение. При остывании цифрового термометра, снова произойдет включение отопления и снова пойдет нагрев. Если вас не устраивает температурный режим, его можно изменить настройкой датчика.

Датчики измерения температуры используются для контроля веществ в твердом, жидком или газообразном состоянии. В зависимости от целей применения, схема строения прибора будет видоизменяться. Но чтобы выбрать подходящий инструмент необходимо обращать внимание на одни и те же нюансы.

Виды, конструкция и принципы действия

Термопара

Датчик включает в себя две проволоки из разных металлов, спаянных между собой. Для отношения концов друг с другом в зоне постоянной температуры, в конструкцию добавляют удлиняющие провода из двух металлов. Когда на концы проводов действуют разные температуры (например, при помещении датчика в горячую воду), то в цепи появляется электрический ток. Сила возникшего тока (от 40 до 60 мкВ) зависит от используемого материала термопары, который влияет на термоэлектрическую силу прибора.

В практике можно встретить железоникелевые, хромоалюминиевые, медно-константановые и так далее. В дешевых моделях используются неблагородные металлы (аналогичных термоэлектродам) для удлиняющих проводов, а в дорогих – благородные металлы, которые способы развивать аналогичную термо-ЭДС, что и электроды (необходимо для уменьшения стоимости высококлассным приборов).

Термопара относится к датчикам с высокой точностью. Проблемой устройства является сложность получения замеренного значения. Термопара действует по принципу относительности отличия температур между разъемами. Горячий спай помещается в замеряемое вещество, а холодный остается находиться в окружающей среде.

Читайте также:  Дизайнерские таблицы сочетания цветов

При необходимости использования термопары работа проводится следующим образом. Температуру холодного спая необходимо компенсировать, для чего вторую термопару помещают в среду с известным показателем.

Если используется программный способ компенсации, второй датчик помещается в изометрическую камеру, где находятся холодные спаи, что позволяет контролировать температуру с высокой точностью. Самое сложное в работе с одноконтактной термопарой – снять показатели.

В ГОСТе прописаны коэффициенты, необходимые для перевода ЭДС в показатель температуры и наоборот. Подсчет также может вестись при помощи контроллера.

Но получаемый от термопары показатель ЭДС измеряется в единицах и сотнях микровольт. Поэтому использование аналоговых преобразователей не будет успешным. Для сборки специальной конструкции, цель которой – получение точных результатов, потребуются малошумящие аналоговые преобразователи.

На практике для устранения имеющихся погрешностей используют автоматическое введение поправки на температуру свободных концов. Под этим подразумевают введение моста с плечами в виде медного и манганинового терморезисторов.

Терморезисторы

Терморезисторы делятся по типу зависимости сопротивления от температуры. Они могут быть отрицательными (NTC) или положительными (PTC).

Измерения легче проводить при помощи терморезисторов. Принцип работы построен на сопротивлении материалов внешней температуре. Высокая точность присуща для приборов, изготовленных из платины. На работу терморезисторов влияют две характеристики.

Первая – базовое сопротивление, второе – температура, при которой оно определяется. ГОСТ устанавливает, что определение должно проходить при 0 градусов по Цельсию. В нормативном документе указывается, что рекомендуется использовать несколько номиналов сопротивлений, определяемых в Омах, а также температуры, что позволит сопоставить результаты при 0°С и другом показателе. Для этого используется следующая формула:

Температурный коэффициент будет изменяться в зависимости от используемого материала для термометров, что отражено в ГОСТе. В нормативном документе также указываются коэффициенты полинома, необходимые для расчета в зависимости от текущего сопротивления.

Термометры сопротивления обладают одним минусом – низкий температурный коэффициент сопротивления. Несмотря на этот нюанс, использование терморезисторов проще по сравнению с принципом работы термопары.

Способы измерения будут зависеть от комплектации модели. Базовые терморезисторы необходимо включать в цепь с источником тока и контролируемого дифференциального напряжения. Чтобы корректно определить доли единицы процента получаемых от температурного коэффициента проводников, лучше использовать аналого-цифровые преобразователи.

Если в датчик уже встроен аналоговый выход, соответствующий питаемому напряжению, то для оцифровывания можно напрямую подключать терморезистор к преобразователю

Комбинированные

Комбинированные датчики включают в себя несколько полупроводников, объединенных в единое устройство. Датчики могут иметь встроенный цифровой интерфейс, а не только интегральные схемы с выходом. Часто используется комбинированный датчик благодаря возможности подключения параллельных устройств. Погрешность при расчете температуры равна 2 °С, а при определении влажности – 5%. Проблема в таком датчике одна – оптимизация интерфейса.

Цифровые

В цифровых датчиках устанавливается трехвыводная микросхема. Показатели считываются с нескольких параллельно работающих датчиков, что позволяет получить показания с точностью 0,5 °С. Работа электронного термометра возможна от -55 до +125 °С. Единственным минусом устройства является скорость получения результатов – 750 секунд для получения максимально точного показателя. Определение точности прибора осуществляется при помощи соответствующих регулировок, которые необходимы для уменьшения количества затрачиваемого времени на получение результата. Опрос датчика не имеет смысла, так как корпус является инерционным.

Бесконтактные

Работа датчика основана на нагревании тонкой пленки, что осуществляется благодаря воздействию инфракрасных лучей. Встретить подобную технологию можно в пирометрических устройствах. В отличии от контактного, получить данные можно на расстоянии.

Кварцевые преобразователи температуры

Если диапазон изменяемых температур превышает стандартные значения и достигает отметки от -80 до +250°С, то используются кварцевые преобразователи. Такие устройства работают на принципе взаимодействия кварца и температуры, отражаемого частотной зависимостью. Преобразователь имеет несколько функций, которые меняются в зависимости от расположения среза по осям кристалла.

Кварцевые датчики отличаются высокой точностью, стабильностью и разрешением. Являются более перспективными способами измерения температуры. Часто можно встретить в цифровых термометрах.

Шумовые

Шумовой датчик служит для получения показателей по принципу разности потенциалов на резисторе, которые меняются в зависимости от температуры. На практике подобный способ измерения имеет условие – одна из температур должна быть известна, а вторая — измеряемая. Два полученных шума от различных температур сравнивают и находят искомое значение.

Работа датчика возможна от -270 до +1100 °С. Из преимуществ отмечается возможность измерения температур в термодинамике. Но минусом является сложность реализации такого способа измерения напряжения шумом из-за наличия различий с шумом усилителя.

Ядерного квадрупольного резонанса

Принцип работы биметаллического термометра основывается на действии градиента поля тока решетки кристалла и момента ядра, вызванного отклонением заряда от симметрии сферы. При помощи такого процесса создается процессия ядер. Частота напрямую зависит от градиента поля решетки. В зависимости от вещества, величина показателя может подниматься до нескольких тысяч МГц. Чем выше температура, тем меньше частота ЯКР.

Читайте также:  Дренажные насосы со встроенным поплавковым выключателем

ЯКР образует ампулу с веществом, которая помещается в обмотку индуктивности для дальнейшего соединения с контуром генератора. Если частота генератора и частота ЯКР совпадают, то исходящая от генератора энергия поглощается. При измерении вещества с температурой -263°С погрешность составляет 0,02 градуса, а при температуре 27°С, погрешность равна 0,002 градуса. Из преимуществ датчика выделяют неизменную стабильность. Минусом является значительная нелинейность преобразующей функции.

Объемные преобразователи

Принцип работы иного рода биметаллического термометра построен на свойстве веществ расширяться и сжиматься в зависимости от действующей температуры. Диапазон действия преобразователя определяется в зависимости от стабильности материала. Датчик может использоваться при температурах от -60 до +400°С. Погрешность составит от 1 до 5%.

При определении температуры датчиками на жидкости погрешность падает до 1-3% в зависимости от температурной среды. Температура закипания и замерзания жидкости также будет влиять на интервал работы датчика.

Если датчик измеряет преобразователи на газе, то граница измерения зависит от точки перехода газа в жидкое состояние и стойкостью баллона в воздействующей температуре.

Канальный

Все цифровые термометры относятся к канальным, так как для передачи сигналов они используют каналы. В зависимости от количества таких “магистралей” определяется канальность устройства. Так термометр Testo 925 относится к 1-канальным, в основе работы лежит термопара, как и у термометра Testo 735-2 – 3-канального. А Testo 810 – 2-канальный прибор с инфракрасным термометром.

Параметры выбора

Чтобы осуществить корректный выбор подходящего термометра, необходимо определить несколько условий, которые должны соответствовать для комфортной работы прибором.

Диапазон рабочей температуры

Необходимо знать, в каких температурах будет задействован термометр. Также нужно определить, какая погрешность будет приемлемой при получении результатов. Если диапазон температур небольшой, то подойдут термисторы. В самых суровых условиях работоспособны преимущественно шумовые приборы.

Условия проведения замеров

Возможно ли поместить термометр в среду или материал, который нужно заменить. Если нет, то получить данные можно при помощи радиационных термометров, которые замеряют температуру сквозь препятствия.

Время работы до калибровки или замены

Установить условия работы датчика. Окружающая обстановка может быть стандартной, с высокой влажность, окислительной, пожароопасной и так далее.

Величина сигнала выхода

Сигнал выхода должен соответствовать возможностям электроизмерительных приборов для дальнейшей обработки получаемых данных. Зависит это от полученных показателей температуры, преобразуемых в энергию.

Другие технические данные

Также при определении подходящего типа датчика температуры необходимо обращать внимание на второстепенные факторы. Эти нюансы позволяют выбрать самый подходящий аппарат для получения необходимых данных.

Погрешность

Для получения самых точных результатов потребуется большое количество времени. Лучший показатель выдает биметаллический термометр, построенный по принципу ЯКР и цифровые. Первые – быстрее, а вторые – точнее.

Разрешение

Этот показатель позволяет получить от датчика более точные приращениям дискретности измерения температуры. Ярким представителем является DS18B20, который может работать в разрешении 9,10,11 и 12 бит. Самый малый режим даст 0.5°C, а максимальный — 0.0625°C.

Напряжение

На величину выходного напряжения будет влиять сопротивление резистора. В зависимости от этого напряжение может быть линейным (изменяться в зависимости от температуры) и нелинейным. Для каждого датчика существуют свои эталонные величины на выводах термометра, который зависит от температуры измеряемого объекта.

Время сработки

Показатель отвечает за скорость получения результатов замера. Как правило, быстрые замеры можно получить, имея крупную погрешность. Для устранения этого недостатка потребуется пренебречь временем сработки и увеличить его до необходимого показателя точности.

Промышленные термодатчики и сенсоры

Кроме стандартных бытовых термодатчиков бывают промышленные, которые используются исключительно на специальных объектах. Их распространение направлено на определенную группу лиц из-за избыточных возможностей, которые требуются только на производстве. Некоторые из них способны работать в различных нетрадиционных средах и суровых условиях. Выбор подходящих типов осуществляется тем же образом, что и для подбора бытовых датчиков.

Применение

Стоит понимать, что каждый из типов датчиков создан для использования в специальных условиях. Практически во всех сферах производства и жизни требуется знать температуру. Так применять термисторы необходимо для получения абсолютных показателей, для сбора показателей в помещениях – шумовые, для получения максимально точных данных – цифровые и так далее.

Мир датчиков температур охватывает все сферы жизни, где требуется измерение показателей. Это может быть помещение, жидкость или предмет с совершенно различными нюансами. В одних помещениях высокая влажность, в другие нельзя попадать. Аналогичные параллели можно проводить с жидкостями и объектами. При выборе подходящего термометра необходимо обращать внимание на нюансы условий измерения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *