Меню Рубрики

Для питания обмотки генератора переменного тока используют

Для питания электрическим током всех потребителей при работе двигателя и подзарядки аккумуляторной батареи, компенсируя ее расход энергии при пуске двигателя, служит генератор. На современных автомобилях устанавливаются генераторы, представляющие собой синхронные электрические машины переменного тока с электромагнитным возбуждением, с встроенным выпрямителем на кремниевых диодах и электронным регулятором напряжения. Ротор генератора приводится во вращение от шкива коленчатого вала двигателя ремнем.

Генератор переменного тока состоит из статора, ротора и выпрямительного устройства.

Генератор преобразует механическую энергию в электрическую. В отличие от ранее использовавшихся генераторов постоянного тока в настоящее время применяют, в основном, генераторы переменного тока как более надежные и меньшие по размерам и массе.

Поскольку частота вращения генератора зависит от частоты вращения коленчатого вала двигателя, которая меняется в широких пределах, то для поддержания заданного напряжения генератора в нагрузке применяют регулятор напряжения. Название «генератор переменного тока» условно, поскольку в нем устанавливают блок полупроводниковых выпрямителей, благодаря которому потребителям поступает постоянный ток.

Основными элементами генератора Г-222 (рис.3) являются статор и ротор. Статор, к составным частям которого относятся сердечник (19)и неподвижная обмотка (20),установлен в корпусе (17)и зафиксирован крышкой (1) с помощью стяжного болта (21). Ротор состоит из клювообразных полюсных наконечников (15),размещенных на валу (6),опирающемся на подшипники (5) и (16). Вал приводится во вращение посредством шкива (14)с помощью клиновидного ремня от коленчатого вала двигателя.

При работе генератора по обмотке (18) возбуждения ротора проходит ток, подводимый от аккумуляторной батареи через регулятор напряжения и щетки (12),размещенные в щеткодержателе (11)и опирающиеся на контактные кольца (4). Этот ток создает магнитное поле возбуждения, которое распределяется между клювообразными полюсами и при вращении ротора индуцирует в обмотке статора переменный ток. Переменный ток поступает в блок (2)полупроводниковых выпрямителей, а подключение к потребителям осуществляется посредством вывода (8).

а — общий вид; б — полюсные наконечники ротора; в — статор с обмоткой;

1 — крышка; 2 блок выпрямителей; 3— винт; 4 контактные кольца; 5и 16— подшипники; 6— нал; 7— чехол вывода; 8 вывод выходного напряжения; 9 вывод обмотки возбуждения; 10 крышка; 11 — щеткодержатель; 12 щетки; 13 болт; 14— шкив; 15— полюсные наконечники; 17 корпус; 18 обмотка ротора; 19— сердечник статора; 20 обмотка статора; 21— стяжной болт; 22 стальная втулка; 23 резиновая втулка; 24 шайба.

В генераторе (см. схему на рис.4) используется двухполупериодный трехфазный выпрямитель (2)на полупроводниковых диодах. Фазовые обмотки (1)статора соединены в звезду и подключены к средним точкам трех пар последовательно соединенных диодов. Положительные и отрицательные выводы каждых трех диодов объединены.

Обмотка (7) возбуждения посредством контактных колец и щеток (6) через регулятор (5) напряжения, ключ (4) зажигания подключена к положительному выводу аккумуляторной батареи, соединенной с выводом аналогичной полярности выпрямителя генератора.

Электрическая схема генератора

1— статорная обмотка генератора; 2— блок выпрямительных диодов; 3 аккумуляторная батарея; 4 ключ зажигания; 5— регулятор напряжения; 6 щеточный узел генератора; 7 — обмотка возбуждения.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9493 – | 7459 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Термин «генерация» в электротехнику пришел из латинского языка. Он обозначает «рождение». Применительно к энергетике можно сказать, что генераторами называют технические устройства, занимающиеся выработкой электроэнергии.

При этом надо оговориться, что производить электрический ток можно за счет преобразования различных видов энергии, например:

тепловой и других.

Исторически сложилось так, что генераторами называют конструкции, которые преобразуют кинетическую энергию вращения в электричество.

По виду вырабатываемой электроэнергии генераторы бывают:

1. постоянного тока;

Принцип работы простейшего генератора

Физические законы, которые позволяют создавать современные электрические установки для выработки электроэнергии за счет преобразований механической энергии, открыты учеными Эрстедом и Фарадеем.

В конструкции любого генератора реализуется принцип электромагнитной индукции, когда происходит наводка электрического тока в замкнутой рамке за счет пересечения ее вращающимся магнитным полем, которое создается постоянными магнитами в упрощенных моделях бытового использования или обмотками возбуждения на промышленных изделиях повышенных мощностей.

При вращении рамки изменяется величина магнитного потока.

Электродвижущая сила, наводимая в витке, зависит от скорости изменения магнитного потока, пронизывающего рамку в замкнутом контуре S, и прямо пропорциональна его значению. Чем быстрее осуществляется вращение ротора, тем выше величина вырабатываемого напряжения.

Для того чтобы создать замкнутый контур и отвести с него электрический ток, потребовалось создать коллектор и щеточный узел, обеспечивающий постоянный контакт между вращающейся рамкой и стационарно расположенной частью схемы.

За счет конструкции подпружиненных щеток, прижимающихся к коллекторным пластинам, происходит передача электрического тока на выходные клеммы, а с них дальше он поступает в сеть потребителя.

Читайте также:  Газовый камин для дачи в леруа мерлен

Принцип работы простейшего генератора постоянного тока

При вращении рамки вокруг оси ее левая и правая половинки циклически проходят около южного или северного полюса магнитов. В них каждый раз происходит смена направлений токов на противоположное так, что у каждого полюса они протекают в одну сторону.

Для того чтобы в выходной цепи создавался постоянный ток, на коллекторном узле создано полукольцо для каждой половинки обмотки. Прилегающие к кольцу щетки снимают потенциал только своего знака: положительный или отрицательный.

Поскольку полукольцо вращающейся рамки разомкнуто, то в нем создаются моменты, когда ток достигает максимального значения или отсутствует. Чтобы поддерживать не только направление, но и постоянную величину вырабатываемого напряжения, рамку изготавливают по специально подготовленной технологии:

у нее используют не один виток, а несколько — в зависимости от величины запланированного напряжения;

число рамок не ограничивается одним экземпляром: их стараются сделать достаточным количеством для оптимального поддержания перепадов напряжения на одном уровне.

У генератора постоянного тока обмотки ротора располагают в пазах магнитопровода. Это позволяет сокращать потери наводимого электромагнитного поля.

Конструктивные особенности генераторов постоянного тока

Основными элементами устройства являются:

внешняя силовая рама;

коммутационный узел со щётками.

Корпус изготавливают из стальных сплавов или чугуна для придания механической прочности общей конструкции. Дополнительной задачей корпуса является передача магнитного потока между полюсами.

Полюса магнитов крепят к корпусу шпильками или болтами. На них монтируют обмотку.

Статор , называемый еще ярмом или остовом, изготавливают из ферромагнитных материалов. На нем размещают обмотку катушки возбуждения. Сердечник статора оснащен магнитными полюсами, образующими его магнитное силовое поле.

Ротор имеет синоним: якорь. Его магнитопровод состоит из шихтованных пластин, снижающих образование вихревых токов и повышающих КПД. В пазы сердечника заложены обмотки ротора и/или самовозбуждения.

Коммутационный узел со щетками может иметь разное количество полюсов, но оно всегда кратно двум. Материалом щеток обычно используют графит. Коллекторные пластины изготавливают из меди, как наиболее оптимального металла, подходящего по электрическим свойствам проводимости тока.

Благодаря использованию коммутатора на выходных клеммах генератора постоянного тока образуется сигнал пульсирующего вида.

Основные типы конструкций генераторов постоянного тока

По типу питания обмотки возбуждения различают устройства:

1. с самовозбуждением;

2. работающие на основе независимого включения.

Первые изделия могут:

использовать постоянные магниты;

или работать от внешних источников, например, аккумуляторных батарей, ветряной установки…

Генераторы с независимым включением работают от собственной обмотки, которая может быть подключена:

шунтами или параллельным возбуждением.

Один из вариантов подобного подключения показан на схеме.

Примером генератора постоянного тока может служить конструкция, которая раньше часто применялась на автомобильной технике. Ее устройство такое же, как у асинхронного двигателя.

Подобные коллекторные конструкции способны работать в режиме двигателя или генератора одновременно. За счет этого они получили распространение в существующих гибридных автомобилях.

Процесс образования якорной реакции

Она возникает в режиме холостого хода при неправильной настройке усилия прижатия щеток, создающее неоптимальный режим их трения. Это может привести к снижению магнитных полей или возникновению пожара из-за повышенного образования искр.

Способами ее снижения являются:

компенсации магнитных полей за счет подключения дополнительных полюсов;

настройка сдвига положения коллекторных щеток.

Преимущества генераторов постоянного тока

отсутствие потерь на гистерезис и образование вихревых токов;

работа в экстремальных условиях;

пониженный вес и маленькие габариты.

Принцип работы простейшего генератора переменного тока

Внутри этой конструкции используются все те же детали, что и у предыдущего аналога:

коллекторный узел со щетками для отвода тока.

Основное отличие заключается в устройстве коллекторного узла, который создан так, что при вращении рамки через щетки постоянно создается контакт со своей половинкой рамки без циклической смены их положения.

За счет этого ток, сменяющийся по законам гармоники в каждой половинке, полностью без изменений передается на щетки и далее через них в схему потребителя.

Естественно, что рамка создана намоткой не из одного витка, а рассчитанного их количества для достижения оптимального напряжения.

Таким образом, принцип работы генераторов постоянного и переменного тока общий, а отличия конструкции заключаются в изготовлении:

коллекторного узла вращающегося ротора;

конфигурации обмоток на роторе.

Конструктивные особенности промышленных генераторов переменного тока

Рассмотрим основные части промышленного индукционного генератора, у которого ротор получает вращательное движение от рядом расположенной турбины. В конструкцию статора включен электромагнит (хотя магнитное поле может создаваться набором постоянных магнитов) и обмотка ротора с определённым числом витков.

Внутри каждого витка индуктируется электродвижущая сила, которая последовательно складывается в каждом из них и образует на выходных зажимах суммарное значение напряжения, выдаваемого на схему питания подключенных потребителей.

Чтобы повысить на выходе генератора амплитуду ЭДС используют специальную конструкцию магнитной системы, выполненную из двух магнитопроводов за счет применения специальных сортов электротехнической стали в виде шихтованных пластин с пазами. Внутри их смонтированы обмотки.

Читайте также:  Двухъярусная кровать для мальчиков со шкафом

В корпусе генератора расположен сердечник статора с пазами для размещения обмотки, создающей магнитное поле.

Вращающийся на подшипниках ротор тоже имеет магнитопровод с пазами, внутри которых смонтирована обмотка, получающая индуцируемую ЭДС. Обычно для размещения оси вращения выбирается горизонтальное направление, хотя, встречаются конструкции генераторов с вертикальным расположением и соответствующей конструкцией подшипников.

Между статором и ротором всегда создается зазор, необходимый для обеспечения вращения и исключения заклинивания. Но, в то же время в нем происходит потеря энергии магнитной индукции. Поэтому его стараются делать минимально возможным, оптимально учитывая оба этих требования.

Расположенный на одном валу с ротором возбудитель является электрогенератором постоянного тока, обладающим относительно небольшой мощностью. Его назначение: питать электроэнергией обмотки силового генератора в состоянии независимого возбуждения.

Подобные возбудители применяют чаще всего с конструкциями турбинных или гидравлических электрогенераторов при создании основного либо резервного способа возбуждения.

На картинке промышленного генератора показано расположение коллекторных колец и щеток для съема токов с конструкции вращающегося ротора. Этот узел при работе испытывает постоянные механические и электрические нагрузки. Для их преодоления создается сложная конструкция, которая при эксплуатации требует периодических осмотров и выполнения профилактических мероприятий.

Чтобы снизить создаваемые эксплуатационные затраты применяется другая, альтернативная технология, при которой тоже используется взаимодействие между вращающимися электромагнитными полями. Только на роторе располагают постоянные или электрические магниты, а напряжение снимают со стационарно расположенной обмотки.

При создании подобной схемы такую конструкцию могут называть термином «альтернатор». Она применяется в синхронных генераторах: высокочастотных, автомобильных, на тепловозах и судах, установках электрических станций энергетики для производства электроэнергии.

Особенности синхронных генераторов

Название и отличительный признак действия заключен в создании жесткой связи между частотой переменной электродвижущей силы, наводимой в статорной обмотке «f» и вращением ротора.

В статоре вмонтирована трехфазная обмотка, а на роторе — электромагнит с сердечником и обмоткой возбуждения, запитанной от цепей постоянного тока через щеточный коллекторный узел.

Ротор приводится во вращение от источника механической энергии — приводного двигателя с одинаковой скоростью. Его магнитное поле совершает такое же движение.

В обмотках статора наводятся одинаковые по величине, но сдвинутые на 120 градусов по направлению электродвижущие силы, создающие трехфазную симметричную систему.

При подключении на концы обмоток цепей потребителей в схеме начинают действовать токи фаз, которые образуют магнитное поле, вращающееся точно так же: синхронно.

Форма выходного сигнала наводимой ЭДС зависит только от закона распределения вектора магнитной индукции внутри зазора между полюсами ротора и пластинами статора. Поэтому добиваются создания такой конструкции, когда величина индукции меняется по синусоидальному закону.

Когда зазор имеет постоянную характеристику, то вектор магнитной индукции внутри зазора создается по форме трапеции, как показано на графике линий 1.

Если же форму краев на полюсах исправить на косоугольную с изменением зазора до максимального значения, то можно добиться синусоидальной формы распределения, как показано линией 2. Этим приемом и пользуются на практике.

Схемы возбуждения синхронных генераторов

Магнитодвижущая сила, возникающая на обмотке возбуждения «ОВ» ротора, создает его магнитное поле. Для этого существуют разные конструкции возбудителей постоянного тока, основанные на:

1. контактном методе;

2. бесконтактном способе.

В первом случае используется отдельный генератор, называемый возбудителем «В». Его обмотка возбуждения питается от дополнительного генератора по принципу параллельного возбуждения, именуемого подвозбудителем «ПВ».

Все роторы размещаются на общем валу. За счет этого они вращаются совершенно одинаково. Реостаты r1 и r2 служат для регулирования токов в схемах возбудителя и подвозбудителя.

При бесконтактном способе отсутствуют контактные кольца ротора. Прямо на нем монтируют трехфазную обмотку возбудителя. Она синхронно вращается с ротором и передает через совместно вращающийся выпрямитель электрический постоянный ток непосредственно на обмотку возбудителя «В».

Разновидностями бесконтактной схемы являются:

1. система самовозбуждения от собственной обмотки статора;

2. автоматизированная схема.

При первом методе напряжение от обмоток статора поступает на понижающий трансформатор, а затем — полупроводниковый выпрямитель «ПП», вырабатывающий постоянный ток.

У этого способа первоначальное возбуждение создается за счет явления остаточного магнетизма.

Автоматическая схема создания самовозбуждения включает использование:

трансформатора напряжения ТН;

автоматизированного регулятора возбуждения АВР;

трансформатора тока ТТ;

выпрямительного трансформатора ВТ;

тиристорного преобразователя ТП;

блока защиты БЗ.

Особенности асинхронных генераторов

Принципиальное отличие этих конструкций состоит в отсутствие жесткой связи между частотами вращения ротора (nr) и индуцируемой в обмотке ЭДС (n). Между ними всегда существует разница, которую называют «скольжением». Ее обозначают латинской буквой «S» и выражают формулой S=(n-nr)/n.

При подключении нагрузки на генератор создается тормозной момент для вращения ротора. Он влияет на частоту вырабатываемой ЭДС, создает отрицательное скольжение.

Конструкцию ротора у асинхронных генераторов изготавливают:

Асинхронные генераторы могут иметь:

1. независимое возбуждение;

В первом случае используется внешний источник переменного напряжения, а во втором — полупроводниковые преобразователи или конденсаторы в первичной, вторичной или обоих видах схем.

Таким образом, генераторы переменного и постоянного тока имеют много общих черт в принципах построения, но отличаются конструктивным исполнением определённых элементов.

Читайте также:  Patriot ptr 50 450a отзывы

Генератор тока – это такой тип электрической машины, которая способствует преобразованию механической энергии в электрическую. Основано действие генераторов тока по принципу электромагнитной индукции: электродвижущая сила (ЭДС) наводится в движущемся в магнитном поле проводе.

Производить генератор тока может не только постоянный, но и переменный ток. На латыни слово генератор (generator) означает – производитель.

На мировом рынке наиболее известными поставщиками генераторов являются компании: General Electric (GE), ABB, Siemens AG, Mecc Alte.

Генераторы постоянного тока.

Единственным типом источника для получения электроэнергии на протяжении долгого времени были электрические генераторы.

Переменный ток индуктируется в обмотке якоря генератора постоянного тока, затем он электромеханическим выпрямителем – коллектором преобразуется в постоянный ток. Особенно при большой частоте вращения якоря генератора, процесс выпрямления тока коллектором связан с очень частым износом щеток и коллектора.

Различаются генераторы постоянного тока по характеру их возбуждения, они бывают с самовозбуждением и независимого возбуждения. К независимому источнику питания в генераторах с электромагнитным возбуждением подключается обмотка возбуждения, располагающаяся на главных полюсах.

Постоянными магнитами, из которых производятся полюсы машины, возбуждаются генераторы с магнитоэлектрическим возбуждением. Основное применение генераторы постоянного тока находят в тех отраслях промышленности, где постоянный ток является предпочтительным по условиям производства (предприятия электролизной и металлургической промышленности, суда, транспорт и прочие). В качестве источников постоянного тока и возбудителей синхронных генераторов применяются генераторы постоянного тока на электростанциях.

Может достигать до 10 Мегаватт мощность генератора тока.

Генераторы переменного тока.

При достаточно высоком напряжении получать большие токи позволяют генераторы переменного тока. Несколько типов индукционных генераторов различают в настоящее время.

Они состоят из создающего магнитное поле постоянного магнита или электромагнита и обмотки, индуцируется в которой переменная ЭДС. Так как складываются наводимые в последовательно соединенных витках ЭДС, то в рамке индукции амплитуда ЭДС будет пропорциональна количеству в ней витков. Также она пропорциональна через каждый виток амплитуде переменного магнитного потока. В генераторах тока, чтобы получить большой магнитный поток применяется специальная магнитная система, состоящая из двух сердечников, изготовленных из электротехнической стали. В пазах одного из сердечников размещены создающие магнитное поле обмотки, а в пазах второго располагаются обмотки, в которых индуцируется ЭДС. Один из сердечников называется ротором, так как он вращается вокруг вертикальной или горизонтальной оси, вместе со своей обмоткой.

Другой сердечник называется статором – это неподвижный сердечник с его обмоткой. Как можно меньшим делается зазор между сердечниками ротора и статора, наибольшее значение потока магнитной индукции обеспечивается этим. Электромагнит, являющийся ротором вращается в больших промышленных генераторах, а обмотки, уложенные в пазах статора и в которых наводится ЭДС остаются неподвижными.

С помощью скользящих контактов приходится во внешнюю цепь подводить ток к ротору или отводить его из обмотки ротора. Контактными кольцами, которые присоединены к концам его обмотки для этого снабжается ротор. К кольцам прижаты неподвижные пластины-щетки, они осуществляют связь с внешней цепью обмотки ротора. В обмотках создающего магнитное поле электромагнита, сила тока значительно меньше той силы тока, которую отдает генератор тока во внешнюю цепь. Поэтому гораздо удобнее снимать генерируемый ток с неподвижных обмоток, а сравнительно слабый ток подводить через скользящие контакты к вращающемуся электромагниту. Вырабатывается этот ток, расположенным на том же валу отдельным генератором постоянного тока (возбудителем). Вращающимся магнитом создается магнитное поле в маломощных генераторах тока, щетки и кольца в таком случае вообще не требуются.

Бывают двух типов обмотки возбуждения синхронных генераторов: с явнополюсными и неявнополюсными роторами. Выступают из индуктора несущие обмотки возбуждения в генераторах с явнополюсными роторами полюса. На сравнительно низкие частоты вращения рассчитаны генераторы данного типа, они используются для работы с приводом от поршневых паровых машин, гидротурбин, дизельных двигателей. Для привода синхронных генераторов с неявнополюсными роторами применяются газовые и паровые турбины. Стальную поковку с фрезерованными продольными пазами для витков обмотки возбуждения, которые обычно выполнены в виде медных пластин, представляет собой ротор такого генератора. В пазах фиксируются витки, а для снижения потерь мощности и уровня шума, связанных с сопротивлением воздуха шлифуется, а затем полируется поверхность ротора.

По большей части трехфазными делаются обмотки генераторов тока. Подобное сочетание движущихся частей, способных создавать энергию также экономично и непрерывно, встречается в механике редко.

Современный генератор тока является внушительным сооружением, состоящим из медных проводов, стальных конструкций и изоляционных материалов. С точностью до 1 миллиметра изготавливаются важнейшие детали генераторов, которые сами имеют размеры несколько метров.

Добавить комментарий

Ваш адрес email не будет опубликован.

Adblock
detector