Меню Рубрики

Драйвер для светодиодной люстры схема

Содержание

Для того чтобы светодиодные лампы работали максимально ярко и эффективно, используются специальные модули – драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора – преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются – проанализируйте характеристики и виды приборов.

Для чего нужны драйверы?

Основное назначение драйверов – это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.

Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.

Параметры драйверов

Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:

  1. Номинальный ток потребления.
  2. Мощность.
  3. Выходное напряжение.

Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.

Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто – это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».

Мощность драйвера

Мощность прибора – это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие – мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:

где Р, Вт – мощность драйвера;

Р(св), Вт – мощность одного светодиода;

N – количество светодиодов.

Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности – примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.

Цвета светодиодов

Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.

Типы драйверов

Всего можно выделить два типа драйверов для светодиодов:

  1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
  2. Линейные – типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток – высокое влияние различного рода электромагнитных помех.

На что обратить внимание при покупке?

Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование системы освещения. Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое – для использования в бытовых системах они не годятся.

Диммируемый драйвер

Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:

  1. Уменьшать интенсивность освещенности днем.
  2. Скрывать или же подчеркивать определенные элементы интерьера.
  3. Зонировать помещение.

Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.

Разновидности диммируемых драйверов

Типы диммируемых драйверов:

  1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
  2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.
Читайте также:  Динамометрический ключ интернет магазин

Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс – в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении – с синеватым.

Какую микросхему выбрать?

Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

  1. Регулирование яркости.
  2. Напряжение питания – 6-30 В.
  3. Выходной ток – 1,2 А.
  4. Допустимая погрешность при стабилизации тока – не более 5%.
  5. Защита от отключения нагрузки.
  6. Выводы для диммирования.
  7. КПД – 97%.

Обозначение выводов микросхемы:

  1. SW – подключение выходного коммутатора.
  2. GND – отрицательный вывод источников питания и сигнала.
  3. DIM – регулятор яркости.
  4. CSN – датчик входного тока.
  5. VIN – положительный вывод, соединяемый с источником питания.

Варианты схем драйверов

Варианты исполнения устройств:

  1. Если имеется источник питания с постоянным напряжением 6-30 В.
  2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).

Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

Процесс сборки

Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

  1. Ферритовое кольцо – можно использовать со старых блоков питания компьютеров.
  2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

Вариант компоновки

Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется – корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное – понизить напряжение. Сделать это легко простейшим трансформатором.

Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции – от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

Неотъемлемой частью любой качественной лампы или светильника на светодиодах является драйвер. Применительно к освещению, под понятием «драйвер» следует понимать электронную схему, которая преобразует входное напряжение в стабилизированный ток заданной величины. Функциональность драйвера определяется шириной диапазона входных напряжений, возможностью регулировки выходных параметров, восприимчивостью к перепадам в питающей сети и эффективностью.

От перечисленных функций зависят качественные показатели светильника или лампы в целом, срок службы и стоимость. Все источники питания (ИП) для светодиодов условно разделяют на преобразователи линейного и импульсного типа. Линейные ИП могут иметь узел стабилизации по току или напряжению. Часто схемы такого типа радиолюбители конструируют своими руками на микросхеме LM317. Такое устройство легко собирается и имеет малую себестоимость. Но, ввиду очень низкого КПД и явного ограничения по мощности подключаемых светодиодов, перспективы развития линейных преобразователей ограничены.

Читайте также:  Бензобур для рыбалки видео

Импульсные драйверы могут иметь КПД более 90% и высокую степень защиты от сетевых помех. Их мощность потребления в десятки раз меньше мощности, отдаваемой в нагрузку. Благодаря этому они могут изготавливаться в герметичном корпусе и не боятся перегрева.

Первые импульсные стабилизаторы имели сложное устройство без защиты от холостого хода. Затем они модернизировались и, в связи с бурным развитием светодиодных технологий, появились специализированные микросхемы с частотной и широтно-импульсной модуляцией.

Схема питания светодиодов на основе конденсаторного делителя

К сожалению, в конструкции дешёвых светодиодных ламп на 220В из Китая не предусмотрен ни линейный, ни импульсный стабилизатор. Мотивируясь исключительно низкой ценой готового изделия, китайская промышленность смогла максимально упростить схему питания. Называть её драйвером не корректно, так как здесь отсутствует какая-либо стабилизация. Из рисунка видно, что электрическая схема лампы рассчитана на работу от сети 220В. Переменное напряжение понижается RC-цепочкой и поступает на диодный мост. Затем выпрямленное напряжение частично сглаживается конденсатором и через токоограничивающий резистор поступает на светодиоды. Данная схема не имеет гальванической развязки, то есть все элементы постоянно находятся под высоким потенциалом.

В результате частые просадки сетевого напряжения приводит к мерцанию светодиодной лампы. И наоборот, завышенное напряжение сети вызывает необратимый процесс старения конденсатора с потерей ёмкости, а, иногда, становится причиной его разрыва. Стоит отметить, что еще одной, серьезной отрицательной стороной данной схемы является ускоренный процесс деградации светодиодов вследствие нестабильного тока питания.

Схема драйвера на CPC9909

Современные импульсные драйверы для светодиодных ламп имеют несложную схему, поэтому ее можно легко смастерить даже своими руками. Сегодня, для построения драйверов, производится ряд интегральных микросхем, специально предназначенных для управления мощными светодиодами. Чтобы упростить задачу любителям электронных схем, разработчики интегральных драйверов для светодиодов в документации приводят типичные схемы включения и расчеты компонентов обвязки.

Общие сведения

Американская компания Ixys наладила выпуск микросхемы CPC9909, предназначенной для управления светодиодными сборками и светодиодами высокой яркости. Драйвер на основе CPC9909 имеет небольшие габариты и не требует больших денежных вложений. ИМС CPC9909 изготавливается в планарном исполнении с 8 выводами (SOIC-8) и имеет встроенный стабилизатор напряжения.

Благодаря наличию стабилизатора рабочий диапазон входного напряжения составляет 12-550В от источника постоянного тока. Минимальное падение напряжения на светодиодах – 10% от напряжения питания. Поэтому CPC9909 идеальна для подключения высоковольтных светодиодов. ИМС прекрасно работает в температурном диапазоне от -55 до +85°C, а значит, пригодна для конструирования светодиодных ламп и светильников для наружного освещения.

Назначение выводов

Стоит отметить, что с помощью CPC9909 можно не только включать и выключать мощный светодиод, но и управлять его свечением. Чтобы узнать обо всех возможностях ИМС, рассмотрим назначение ее выводов.

  1. VIN. Предназначен для подачи напряжения питания.
  2. CS. Предназначен для подключения внешнего датчика тока (резистора), с помощью которого задаётся максимальный ток светодиода.
  3. GND. Общий вывод драйвера.
  4. GATE. Выход микросхемы. Подает на затвор силового транзистора модулированный сигнал.
  5. PWMD. Низкочастотный диммирующий вход.
  6. VDD. Выход для регулирования напряжения питания. В большинстве случаев подключается через конденсатор к общему проводу.
  7. LD. Предназначен для задания аналогового диммирования.
  8. RT. Предназначен для подключения время задающего резистора.

Схема и ее принцип работы

Типичное включение CPC9909 с питанием от сети 220В показано на рисунке. Схема способна управлять одним или несколькими мощными светодиодами или светодиодами типа High Brightness. Схему можно легко собрать своими руками даже в домашних условиях. Готовый драйвер не нуждается в наладке с учетом грамотного выбора внешних элементов и соблюдением правил их монтажа. Драйвер для светодиодной лампы на 220В на базе CPC9909 работает по методу частотно-импульсной модуляции. Это означает, что время паузы является постоянной величиной (time-off=const). Переменное напряжение выпрямляется диодным мостом и сглаживается емкостным фильтром C1, C2. Затем оно поступает на вход VIN микросхемы и запускает процесс формирования импульсов тока на выходе GATE. Выходной ток микросхемы управляет силовым транзистором Q1. В момент открытого состояния транзистора (время импульса «time-on») ток нагрузки протекает по цепи: «+диодного моста» – LED – L – Q1 – RS – «-диодного моста». За это время катушка индуктивности накапливает энергию, чтобы отдать её в нагрузку во время паузы. Когда транзистор закрывается, энергия дросселя обеспечивает ток нагрузки в цепи: L – D1 – LED – L. Процесс носит циклический характер, в результате чего ток через светодиод имеет пилообразную форму. Наибольшее и наименьшее значение пилы зависит от индуктивности дросселя и рабочей частоты. Частота импульсов определяется величиной сопротивления RT. Амплитуда импульсов зависит от сопротивления резистора RS. Стабилизация тока светодиода происходит путем сравнения внутреннего опорного напряжения ИМС с падением напряжения на RS. Предохранитель и терморезистор защищают схему от возможных аварийных режимов.

Расчет внешних элементов

Частотозадающий резистор

Длительность паузы выставляют внешним резистором RT и определяют по упрощенной формуле:

В свою очередь время паузы связано с коэффициентом заполнения и частотой:

tпаузы=(1-D)/f (с), где D – коэффициент заполнения, который представляет собой отношение времени импульса к периоду.

Читайте также:  Аквафор гейзер или барьер что выбрать

Рекомендованный производителем диапазон рабочих частот составляет 30-120 кГц. Таким образом, сопротивление RT можно найти так: RT=(tпаузы-0,8)*66000, где значение tпаузы подставляют в микросекундах.

Датчик тока

Номинал сопротивления RS задает амплитудное значение тока через светодиод и рассчитывается по формуле: RS=UCS/(ILED+0.5*IL пульс), где UCS – калиброванное опорное напряжение, равное 0,25В;

ILED – ток через светодиод;

IL пульс – величина пульсаций тока нагрузки, которая не должна превышать 30%, то есть 0,3*ILED.

После преобразования формула примет вид: RS=0,25/1.15*ILED (Ом).

Мощность, рассеиваемая датчиком тока, определяется формулой: PS=RS*ILED*D (Вт).

К монтажу принимают резистор с запасом по мощности 1,5-2 раза.

Дроссель

Как известно, ток дросселя не может измениться скачком, нарастая за время импульса и убывая во время паузы. Задача радиолюбителя в том, чтобы подобрать катушку с индуктивностью, обеспечивающей компромисс между качеством выходного сигнала и её габаритами. Для этого вспомним об уровне пульсаций, который не должен превышать 30%. Тогда потребуется индуктивность номиналом:

L=(USLED*tпаузы)/ IL пульс, где ULED – падение напряжения на светодиоде (-ах), взятое из графика ВАХ.

Фильтр питания

В цепи питания установлены два конденсатора: С1 – для сглаживания выпрямленного напряжения и С2 – для компенсации частотных помех. Так как CPC9909 работает в широком диапазоне входного напряжения, то в большой ёмкости электролитического С1 нет нужды. Достаточно будет 22 мкФ, но можно и больше. Емкость металлопленочного С2 для схемы такого типа стандартная – 0,1 мкФ. Оба конденсатора должны выдерживать напряжение не менее 400В.

Однако, производитель микросхемы настаивает на монтаже конденсаторов С1 и С2 с малым эквивалентным последовательным сопротивлением (ESR), чтобы избежать негативного влияния высокочастотных помех, возникающих при переключении драйвера.

Выпрямитель

Диодный мост выбирают, исходя из максимального прямого тока и обратного напряжения. Для эксплуатации в сети 220В его обратное напряжение должно быть не менее 600В. Расчетная величина прямого тока напрямую зависит от тока нагрузки и определяется как: IAC=(π*ILED)/2√2, А.

Полученное значение необходимо умножить на два для повышения надежности схемы.

Выбор остальных элементов схемы

Конденсатор C3, установленный в цепи питания микросхемы должен быть ёмкостью 0,1 мкФ с низким значением ESR, аналогично C1 и C2. Незадействованные выводы PWMD и LD также через C3 соединяются с общим проводом.

Транзистор Q1 и диод D1 работают в импульсном режиме. Поэтому выбор следует делать с учетом их частотных свойств. Только элементы с малым временем восстановления смогут сдержать негативное влияние переходных процессов в момент переключения на частоте около 100 кГц. Максимальный ток через Q1 и D1 равен амплитудному значению тока светодиода с учетом выбранного коэффициента заполнения: IQ1=ID1= D*ILED, А.

Напряжение, прикладываемое к Q1 и D1, носит импульсный характер, но не более, чем выпрямленное напряжение с учетом емкостного фильтра, то есть 280В. Выбор силовых элементов Q1 и D1 следует производить с запасом, умножая расчетные данные на два.

Предохранитель (fuse) защищает схему от аварийного короткого замыкания и должен длительно выдерживать максимальный ток нагрузки, в том числе импульсные помехи.

Установка терморезистора RTH нужна для ограничения пускового тока драйвера, когда фильтрующий конденсатор разряжен. Своим сопротивлением RTH должен защитить диоды мостового выпрямителя от пробоя в начальные секунды работы.

Другие варианты включения CPC9909

Плавный пуск и аналоговое диммирование

При желании CPC9909 может обеспечить мягкое включение светодиода, когда его яркость будет постепенно нарастать. Плавный пуск реализуется при помощи двух постоянных резисторов, подключенных к выводу LD, как показано на рисунке. Данное решение позволяет продлить срок службы светодиода.

Также вывод LD позволяет реализовывать функцию аналогового диммирования. Для этого резистор 2,2 кОм заменяют переменным резистором 5,1 кОм, тем самым плавно изменяя потенциал на выводе LD.

Импульсное димирование

Управлять свечением светодиода можно путем подачи импульсов прямоугольной формы на вывод PWMD (pulse width modulation dimming). Для этого задействуют микроконтроллер или генератор импульсов с обязательным разделением через оптопару.

Кроме рассмотренного варианта драйвера для светодиодных ламп, существуют аналогичные схемные решения от других производителей: HV9910, HV9961, PT4115, NE555, RCD-24 и пр. Каждая из них имеет свои сильные и слабые места, но в целом, они успешно справляются с возложенной нагрузкой при сборке своими руками.

В предыдущей статье мы рассказали как сделать драйвер для светодиодов своими руками, используя транзисторы и распространенные микросхемы-стабилизаторы напряжения. Сегодня же речь пойдет о схемах драйверов на специализированных микросхемах.

Начнем с самой популярной на сегодняшний день микросхемы драйвера светодиодов РТ4115.

PT4115

Просто поразительно, как это никому не известному китайскому производителю PowTech удалось создать настолько успешную микросхему драйвера светодиодов, вместив в компактном корпусе несколько блоков управления с мощным полевым транзистором на выходе!

Микросхема требует минимального обвеса и позволяет конструировать светодиодные светильники мощностью более 30 Вт с высоким КПД и возможностью плавной регулировки яркости.

Согласно официальной документации, LED-драйвер с функцией диммирования на основе PT4115 обладает следующими техническими характеристиками:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *