Меню Рубрики

Дрл без дросселя что будет

Сейчас химия на основе фотокатализаторов получает большое распространение. Разнообразные клеи лаки, фоточувствительные эмульсии и прочие интересные достижения химической промышленности. К сожалению, промышленные установки для УФ стоят приличных денег.

А что, делать если хочется только попробовать химию? подойдёт или нет ? Для этой цели покупать фирменные устройства за N килобаксов, слишком кучеряво…

На территории бывшего СССР обычно из положения выходят добывая кварцевые трубки из лам типа ДРЛ, иметься целая линейка лам от ДРЛ-125 до ДРЛ-1000 с помощью них можно получить достаточно мощное излучение, этого излучения обычно хватает для большинства эпизодических задач. Типа отвердеть клей или лак раз в месяц, или засветить фоторизист.

Как добывать трубку из ламп ДРЛ, как это делать безопасно, написано много информации. Хочется коснуться другого аспекта, а именно запуска этих ламп с минимальными финансовыми затратами.

Штатно для запуска используется специальный дроссель с увеличенных магнитным рассеянием. Но даже он не всегда доступен, а т.к. он тяжёлый то обычно в регионы доставка влетает в копеечку. Дроссель на 700W + доставка тянет на 100$. Что для варианта попробовать, тоже, так не разу не дешёво.

Основной проблемой запуска ртутных ламп являться наличие дугового разряда. Причём холодная лампа и горячая имеют принципиально разное сопротивление горящей дуги. Примерно от единиц Ом до десятков Ом. Соответственно для этого и служит дроссель который ограничивает ток во время запуска и работы лампы. Надо признать, что дроссель является достаточно архаичным инструментом, и для дорогих и мощных лам применяемых в UF-сушилках (несколько килловат мощности, и несколько тыс. долларов за лампу) применяют блоки электронной стабилизации горения дуги. Эти блоки позволяют более точно выдерживать параметры горения дуги продлевая тем самым жизнь лампы, и уменьшая проблемы при отверждении. Даже для архаичной ДРЛ производитель пишет, разброс напряжения не более 3% в противном случае уменьшение срока службы.

Как запустить Лампу ДРЛ без дросселя подручными средствами?

Ответ простой, надо всё го лишь ограничить ток, на всех режимах работы, начиная с разогрева, и заканчивая рабочим режимом. Ограничивать будем резистором.

Но так как резистор надо очень мощный, будем использовать имеющиеся под рукой нагревательные приборы (лампы накаливания, утюги, чайники, тены для нагрева воды, ручные кипятильники и т.д.) Это звучит смешно, но это будет работать и выполнять свои задачи.

Единственный недостаток, это перерасход электричества, т.е. если мы запустим лампу ДРЛ на 400W на балласте будет выделяться в тепло около 250W. Но думаю для задачи попробовать ультрафиолет, или для эпизодических работ это несущественно.

Почему так никто не делал?

Почему никто, существуют лампы ДРБ в которых использован именно этот принцип. Рядом с кварцевой трубкой, расположена нить накаливания обычной лампочки.

А писатели в интернете видимо не учили в школе физику. Ну конечно ещё один маленький нюанс, нужна цепь прогрева, т.е. греем лампу одним резистором, а на рабочий режим выводим другим. Но думаю, с выключателем и двумя проводками многие справятся :)

Так, для многих правильные схемы, это тёмный лес, постарался изобразить в картинках. Более приближенно к жизни.

Как это работает?

1) Этап прогрева, выключатель должен быть обязательно разомкнут . Включаем лампу в сеть. Лампа накаливания начинает ярко светиться, трубка в лампе ДРЛ начинает мерцать и медленно разгораться. Минут через 3..5 трубка в лампе уже начнёт светить достаточно ярко.

2) Второе замыкаем выключатель на основной балласт, ток ещё увеличиться и ещё через 3 мин лампа выйдет на рабочий режим.

Внимание суммарно на нагрузке лампы + утюги чайники и т.д. будет выделять мощности сопоставимые с мощностью лампы. Утюг допустим, может отключиться встроенным термореле, и мощность лампы ДРЛ снизиться.

Для большинства такая схема будет очень сложной, особенно для тех у кого нет прибора для замера сопротивления. Для них я ещё более упростил схему:

Запуск простой, выкручиваем лампы, оставляем только нужное количество (1-2шт) для запуска горелки, и по мере прогрева начинаем вкручивать. Для мощных лам ДРЛ можно использовать в качестве резистора трубчатые галогенные лампы.

Теперь самое сложное:

Наверно, уже многие поняли, что лампы и нагрузки надо как то подбирать? Безусловно, если взять какой то утюг и подключить к лампе ДРЛ-125 от лампы ничего не останется, а вы получите ртутное заражение. К стати, тоже самое будет, если вы возьмете для лампы ДРЛ-125 дроссель от ДРЛ-700. Т.е. мозг всё таки надо включать .

Несколько простых правил, что бы сберечь силы нервы и здоровье :)

1)Ориентироваться на шильдики приборов нельзя, нужно замерять реальное сопротивление омметром и делать вычисления. Либо использовать с запасом прочности, выбирая чуть меньшую мощность чем можно.

2)Замерять сопротивление ламп накаливания бесполезно, холодная спираль имеет в 10 раз меньшее сопротивление, чем горячая. Лампы накаливания худший выбор, приходиться ориентироваться по надписи на лампе. И не в коем случае не включаете нагрузку из лам накаливания разом, вкручивайте их по 1-штуке, уменьшая броски тока. Так как подозреваю, что это будет самый популярный способ включения лампы ДРЛ без дросселя. Снял ролик для примера.

3)Из общих соображений для начала разогрева лампы ДРЛ используйте нагрузку не сильно больше её номинальной мощности. Для примера ДРЛ-400 для прогрева используйте 300-400ват.

Таблица для разных ламп:

Тип лампы V-дуги I-дуги R-дуги Баластный резистор Надпись на баластеутюгелампетэн Тепло на баласте при работе
ДРЛ-125 125 В 1 А 125 Ом 80 Ом 500 Вт 116 Вт
ДРЛ-250 130 В 2 А 68 Ом 48 Ом 1000 Вт 170 Вт
ДРЛ-400 135 В 3 А 45 Ом 30 Ом 1600 Вт 250 Вт
ДРЛ-700 140 В 5 А 28 Ом 17 Ом 2850 Вт 380 Вт

Комментарии к таблице:

1 – наименование лампы. 2 – рабочее напряжение на прогретой лампе. 3 – номинальный рабочий ток лампы. 4 – примерное рабочее сопротивление лампы в разогретом состоянии. 5 – сопротивление балластного резистора для работы на полную мощность. 6 – примерная мощность написанная на шильдике устройства (тэны, лампы и т.д.) которое будет использовано в качестве балластного резистора. 7 – мощность в ватах, которая будет выделяться на балластном резисторе, или устройстве его заменяющем.

Если сложно, или вам кажется, что это не будет работать. Снял ролик, в качестве примера лампа ДРЛ-400 запускаю её тремя лампами по 300вт (обошлись мне по 30руб штука). Мощность на лампе ДРЛ получилась около 300W потери на лампах накаливания 180W. Как видно ничего сложно нет.

Читайте также:  Выдвижные системы для кухонных шкафов

Теперь ложка дёгтя:

К сожалению, использовать горелки от ламп ДРЛ в коммерческом применении не так просто как кажется. Кварцевая трубка в лампах ДРЛ выполнена из расчётов работы в среде инертного газа. В связи с этим введены некоторые технологические упрощения в производстве. Что незамедлительно сказывается на сроке службы, как только вы разбиваете внешний баллон лампы. Хотя конечно с учётом дешевизны (Ваттрубль) ещё не известно, что более выгодно специализированные лампы, или постоянно меняемые излучатели из ДРЛ. Перечислю, основные ошибки при проектировании всяких устройств из ламп ДРЛ:

1) Охлаждение лампы. Лампа должна быть горячая, охлаждение только косвенное. Т.е. охлаждать надо отражатель лампы а не лампу саму. Идеальный вариант засунуть излучатель в кварцевую трубку, и охлаждать внешнюю кварцевую трубку, а не сам излучатель.

2) Использование лампы без отражателей, т.е. разбили колбу и вкрутили лампу в патрон. Дело в том, что при таком подходе лампа не прогревается до рабочих температур, идёт сильная деградация и уменьшение срока службы в тысячи раз. Лампу надо поставить как минимум в U-образный отражатель из алюминия, что бы поднять температуру вокруг лампы. И заодно сфокусировать излучение.

3) Борьба с озоном. Ставят мощные вентиляторы вытяжки, и если поток идёт сквозь лампу, то получаем охлаждение. Надо разрабатывать косвенный отвод озона, что бы забор воздухаозона шёл в как можно дальше от лампы.

4) Топорность при обрезке цоколя. При добывании излучателя, надо действовать максимально осторожно, иначе микротрещины в местах подключения проводников к лампе разгерметизируют её за десяток часов горения.

Очень частый вопрос про спектр излучения кварцевой колбы от ламп ДРЛ. Потому как некоторые производители химии пишут спектр чувствительности своих фотоинициаторов.

Так УФ излучатель лампы ДРЛ находиться в средней точке между высоким и очень высоким давлением у неё несколько резонансов в диапазоне от 312 до 579нм. Основные спектры резонанса выглядят примерно так.

Так же хочется отметить, что большинство доступных оконных стёкол отрежут спектр лампы с низу до 400нм с коэффициентом затухания 50-70%. Учитывайте это при проектировании установок экспонирования отверждении и т.д. Либо ищите химически чистые стёкла с нормированными показателями пропускания.

Хочется напомнить используйте средства защиты при работе с UF излучением, вот пару роликов для просмотра.

Первый ролик. Обращаем внимание на инопланетянина таскающего оттиски к сушке со снятым чехлом, вот так вот защищаться приходиться от UF излучения.

Второй ролик ручная сушилка для лака. К сожалению не сказано, что нужна вытяжка, озон не сильно полезен…

Ну что, ещё не страшно тогда продвигаемся дальше. А как быть бедным полиграфистамшелкографам которые решили попробовать современные UF краски. Цены от фирменных сушилок захватывают дух, а если перевести в рубли, то просто прибивают.

Думаю многие пробовали сушить ДРЛ трубками, и ничего не получалось, ну кроме некоторых сортов лака.

В общем продолжение следует.

Читайте мои обзоры о принтерах и прочем оборудовании на моём сайте следите за обновлениями.

Сейчас химия на основе фотокатализаторов получает большое распространение. Разнообразные клеи лаки, фоточувствительные эмульсии и прочие интересные достижения химической промышленности. К сожалению, промышленные установки для УФ стоят приличных денег.

А что, делать если хочется только попробовать химию? подойдёт или нет ? Для этой цели покупать фирменные устройства за N килобаксов, слишком кучеряво…

На территории бывшего СССР обычно из положения выходят добывая кварцевые трубки из лам типа ДРЛ, иметься целая линейка лам от ДРЛ-125 до ДРЛ-1000 с помощью них можно получить достаточно мощное излучение, этого излучения обычно хватает для большинства эпизодических задач. Типа отвердеть клей или лак раз в месяц, или засветить фоторизист.

Как добывать трубку из ламп ДРЛ, как это делать безопасно, написано много информации. Хочется коснуться другого аспекта, а именно запуска этих ламп с минимальными финансовыми затратами.

Штатно для запуска используется специальный дроссель с увеличенных магнитным рассеянием. Но даже он не всегда доступен, а т.к. он тяжёлый то обычно в регионы доставка влетает в копеечку. Дроссель на 700W + доставка тянет на 100$. Что для варианта попробовать, тоже, так не разу не дешёво.

Основной проблемой запуска ртутных ламп являться наличие дугового разряда. Причём холодная лампа и горячая имеют принципиально разное сопротивление горящей дуги. Примерно от единиц Ом до десятков Ом. Соответственно для этого и служит дроссель который ограничивает ток во время запуска и работы лампы. Надо признать, что дроссель является достаточно архаичным инструментом, и для дорогих и мощных лам применяемых в UF-сушилках (несколько килловат мощности, и несколько тыс. долларов за лампу) применяют блоки электронной стабилизации горения дуги. Эти блоки позволяют более точно выдерживать параметры горения дуги продлевая тем самым жизнь лампы, и уменьшая проблемы при отверждении. Даже для архаичной ДРЛ производитель пишет, разброс напряжения не более 3% в противном случае уменьшение срока службы.

Как запустить Лампу ДРЛ без дросселя подручными средствами?

Ответ простой, надо всё го лишь ограничить ток, на всех режимах работы, начиная с разогрева, и заканчивая рабочим режимом. Ограничивать будем резистором.

Но так как резистор надо очень мощный, будем использовать имеющиеся под рукой нагревательные приборы (лампы накаливания, утюги, чайники, тены для нагрева воды, ручные кипятильники и т.д.) Это звучит смешно, но это будет работать и выполнять свои задачи.

Единственный недостаток, это перерасход электричества, т.е. если мы запустим лампу ДРЛ на 400W на балласте будет выделяться в тепло около 250W. Но думаю для задачи попробовать ультрафиолет, или для эпизодических работ это несущественно.

Почему так никто не делал?

Почему никто, существуют лампы ДРБ в которых использован именно этот принцип. Рядом с кварцевой трубкой, расположена нить накаливания обычной лампочки.

А писатели в интернете видимо не учили в школе физику. Ну конечно ещё один маленький нюанс, нужна цепь прогрева, т.е. греем лампу одним резистором, а на рабочий режим выводим другим. Но думаю, с выключателем и двумя проводками многие справятся :)

Так, для многих правильные схемы, это тёмный лес, постарался изобразить в картинках. Более приближенно к жизни.

Читайте также:  Гирлянды бахрома для улицы белый провод

Как это работает?

1) Этап прогрева, выключатель должен быть обязательно разомкнут . Включаем лампу в сеть. Лампа накаливания начинает ярко светиться, трубка в лампе ДРЛ начинает мерцать и медленно разгораться. Минут через 3..5 трубка в лампе уже начнёт светить достаточно ярко.

2) Второе замыкаем выключатель на основной балласт, ток ещё увеличиться и ещё через 3 мин лампа выйдет на рабочий режим.

Внимание суммарно на нагрузке лампы + утюги чайники и т.д. будет выделять мощности сопоставимые с мощностью лампы. Утюг допустим, может отключиться встроенным термореле, и мощность лампы ДРЛ снизиться.

Для большинства такая схема будет очень сложной, особенно для тех у кого нет прибора для замера сопротивления. Для них я ещё более упростил схему:

Запуск простой, выкручиваем лампы, оставляем только нужное количество (1-2шт) для запуска горелки, и по мере прогрева начинаем вкручивать. Для мощных лам ДРЛ можно использовать в качестве резистора трубчатые галогенные лампы.

Теперь самое сложное:

Наверно, уже многие поняли, что лампы и нагрузки надо как то подбирать? Безусловно, если взять какой то утюг и подключить к лампе ДРЛ-125 от лампы ничего не останется, а вы получите ртутное заражение. К стати, тоже самое будет, если вы возьмете для лампы ДРЛ-125 дроссель от ДРЛ-700. Т.е. мозг всё таки надо включать .

Несколько простых правил, что бы сберечь силы нервы и здоровье :)

1)Ориентироваться на шильдики приборов нельзя, нужно замерять реальное сопротивление омметром и делать вычисления. Либо использовать с запасом прочности, выбирая чуть меньшую мощность чем можно.

2)Замерять сопротивление ламп накаливания бесполезно, холодная спираль имеет в 10 раз меньшее сопротивление, чем горячая. Лампы накаливания худший выбор, приходиться ориентироваться по надписи на лампе. И не в коем случае не включаете нагрузку из лам накаливания разом, вкручивайте их по 1-штуке, уменьшая броски тока. Так как подозреваю, что это будет самый популярный способ включения лампы ДРЛ без дросселя. Снял ролик для примера.

3)Из общих соображений для начала разогрева лампы ДРЛ используйте нагрузку не сильно больше её номинальной мощности. Для примера ДРЛ-400 для прогрева используйте 300-400ват.

Таблица для разных ламп:

Тип лампы V-дуги I-дуги R-дуги Баластный резистор Надпись на баластеутюгелампетэн Тепло на баласте при работе
ДРЛ-125 125 В 1 А 125 Ом 80 Ом 500 Вт 116 Вт
ДРЛ-250 130 В 2 А 68 Ом 48 Ом 1000 Вт 170 Вт
ДРЛ-400 135 В 3 А 45 Ом 30 Ом 1600 Вт 250 Вт
ДРЛ-700 140 В 5 А 28 Ом 17 Ом 2850 Вт 380 Вт

Комментарии к таблице:

1 – наименование лампы. 2 – рабочее напряжение на прогретой лампе. 3 – номинальный рабочий ток лампы. 4 – примерное рабочее сопротивление лампы в разогретом состоянии. 5 – сопротивление балластного резистора для работы на полную мощность. 6 – примерная мощность написанная на шильдике устройства (тэны, лампы и т.д.) которое будет использовано в качестве балластного резистора. 7 – мощность в ватах, которая будет выделяться на балластном резисторе, или устройстве его заменяющем.

Если сложно, или вам кажется, что это не будет работать. Снял ролик, в качестве примера лампа ДРЛ-400 запускаю её тремя лампами по 300вт (обошлись мне по 30руб штука). Мощность на лампе ДРЛ получилась около 300W потери на лампах накаливания 180W. Как видно ничего сложно нет.

Теперь ложка дёгтя:

К сожалению, использовать горелки от ламп ДРЛ в коммерческом применении не так просто как кажется. Кварцевая трубка в лампах ДРЛ выполнена из расчётов работы в среде инертного газа. В связи с этим введены некоторые технологические упрощения в производстве. Что незамедлительно сказывается на сроке службы, как только вы разбиваете внешний баллон лампы. Хотя конечно с учётом дешевизны (Ваттрубль) ещё не известно, что более выгодно специализированные лампы, или постоянно меняемые излучатели из ДРЛ. Перечислю, основные ошибки при проектировании всяких устройств из ламп ДРЛ:

1) Охлаждение лампы. Лампа должна быть горячая, охлаждение только косвенное. Т.е. охлаждать надо отражатель лампы а не лампу саму. Идеальный вариант засунуть излучатель в кварцевую трубку, и охлаждать внешнюю кварцевую трубку, а не сам излучатель.

2) Использование лампы без отражателей, т.е. разбили колбу и вкрутили лампу в патрон. Дело в том, что при таком подходе лампа не прогревается до рабочих температур, идёт сильная деградация и уменьшение срока службы в тысячи раз. Лампу надо поставить как минимум в U-образный отражатель из алюминия, что бы поднять температуру вокруг лампы. И заодно сфокусировать излучение.

3) Борьба с озоном. Ставят мощные вентиляторы вытяжки, и если поток идёт сквозь лампу, то получаем охлаждение. Надо разрабатывать косвенный отвод озона, что бы забор воздухаозона шёл в как можно дальше от лампы.

4) Топорность при обрезке цоколя. При добывании излучателя, надо действовать максимально осторожно, иначе микротрещины в местах подключения проводников к лампе разгерметизируют её за десяток часов горения.

Очень частый вопрос про спектр излучения кварцевой колбы от ламп ДРЛ. Потому как некоторые производители химии пишут спектр чувствительности своих фотоинициаторов.

Так УФ излучатель лампы ДРЛ находиться в средней точке между высоким и очень высоким давлением у неё несколько резонансов в диапазоне от 312 до 579нм. Основные спектры резонанса выглядят примерно так.

Так же хочется отметить, что большинство доступных оконных стёкол отрежут спектр лампы с низу до 400нм с коэффициентом затухания 50-70%. Учитывайте это при проектировании установок экспонирования отверждении и т.д. Либо ищите химически чистые стёкла с нормированными показателями пропускания.

Хочется напомнить используйте средства защиты при работе с UF излучением, вот пару роликов для просмотра.

Первый ролик. Обращаем внимание на инопланетянина таскающего оттиски к сушке со снятым чехлом, вот так вот защищаться приходиться от UF излучения.

Второй ролик ручная сушилка для лака. К сожалению не сказано, что нужна вытяжка, озон не сильно полезен…

Ну что, ещё не страшно тогда продвигаемся дальше. А как быть бедным полиграфистамшелкографам которые решили попробовать современные UF краски. Цены от фирменных сушилок захватывают дух, а если перевести в рубли, то просто прибивают.

Думаю многие пробовали сушить ДРЛ трубками, и ничего не получалось, ну кроме некоторых сортов лака.

Читайте также:  Бортики подушки в кроватку мастер класс

В общем продолжение следует.

Читайте мои обзоры о принтерах и прочем оборудовании на моём сайте следите за обновлениями.

Лампа ДРЛ (дуговая ртутная лампа) — дуговая ртутная люминофорная лампа высокого давления. Это одна из разновидностей электрических ламп, что широко используется для общего освещения объёмных территорий таких как заводские цеха, улицы, площадки и т.д. (где не предъявляется особые требования к цветопередаче ламп, но требуется от них высокой светоотдачи). Лампы ДРЛ имеют мощность 50 – 2000 Вт и изначально рассчитаны на работу в электрических сетях переменного тока с напряжением питания 220 В. (частота 50 Гц.). Для согласования электрических параметров лампы и источника электропитания практически все виды ртутных ламп, имеющие падающую внешнюю вольт-амперную характеристику, нуждаются в использовании пускорегулирующего аппарата (ПРА), в качестве которого в большинстве случаев используется дроссель, включенный последовательно с лампой.

Устройство

  1. Основные электроды.
  2. Поджигающие электроды.
  3. Вводы электродов.
  4. Буферный газ (Аргон – служит для начальной ионизации и получения дугового разряда).
  5. Позисторы (служат для ограничения тока тлеющего разряда на поджигающих электродах).
  6. Ртуть (служит для изменения градиента потенциала в разряде).

Первые лампы ДРЛ изготовлялись двухэлектродными. Для зажигания таких ламп требовался источник высоковольтных импульсов. В качестве него применялось устройство ПУРЛ-220 (Пусковое Устройство Ртутных Ламп на напряжение 220 В). Электроника тех времен не позволяла создать достаточно надёжных зажигающих устройств, а в состав ПУРЛ входил газовый разрядник, имевший срок службы меньший, чем у самой лампы. Поэтому в 1970-х гг. промышленность постепенно прекратила выпуск двухэлектродных ламп. На смену им пришли четырёхэлектродные, не требующие внешних зажигающих устройств.

Теперь, что касается устройства лампы ДРЛ. Дуговая ртутная лампа (ДРЛ) состоит из трёх основных функциональных частей:

  • цоколь;
  • кварцевая горелка ;
  • стеклянная колба.

Цоколь предназначен для приема электроэнергии из сети, по средствам соединения контактов лампы (один из которых резьбовой, а второй — точечный) с контактами патрона, после чего происходит передача переменного электричества непосредственно на электроды самой горелки ДРЛ лампы.

Кварцевая горелка является основной функциональной частью лампы ДРЛ. Она представляет собой кварцевую колбу, у которой по бокам располагаются по 2 электрода. Два из них основных и два – дополнительные. Пространство горелки заполнено инертным газом «аргона» (для изоляции теплообмена между горелкой и средой) и капелькой ртути.

Стеклянная колба — это внешнюю часть лампы. Внутри неё помещена кварцевая горелка, к которой от контактного цоколя подходят проводники. Из колбы выкачивают воздух и закачивают в ней азот. И ещё один немаловажный элемент, что находится в стеклянной колбе, это 2 ограничивающих сопротивления (подсоединенные к дополнительным электродам). Внешняя стеклянная колба с внутренней стороны покрыта люминофором.

Принцип действия

Горелка (РТ) лампы изготавливается из тугоплавкого и химически стойкого прозрачного материала (кварцевого стекла или специальной керамики), и наполняется строго дозированными порциями инертных газов. Кроме того, в горелку вводится металлическая ртуть, которая в холодной лампе имеет вид компактного шарика, или оседает в виде налёта на стенках колбы и (или) электродах. Светящимся телом РЛВД является столб дугового электрического разряда.

Процесс зажигания лампы, оснащённой зажигающими электродами, выглядит следующим образом.

На лампу подаётся сетевое напряжение, оно подводится к промежутку между основным и дополнительным электродом, что расположены с одной стороны кварцевой горелки и на такую же пару, расположенную на другой стороне горелки. Вторым промежутком, между которых сосредотачивается сетевое напряжение, это расстояние между основными электродами кварцевой горелки, находящихся на противоположных её сторонах.

Расстояние между основным и дополнительным электродом невелико, это позволяет при подаче напряжения легко ионизировать данный промежуток газа. Ток на данном участке обязательно ограничивается сопротивлениями, стоящие в цепи дополнительных электродов перед входом проволочных проводников в кварцевую горелку. После того как на обоих концах кварцевой горелки произошла ионизация, она постепенно перебрасывается на промежуток между основными электродами, тем самым обеспечивая дальнейшее горение лампы ДРЛ.

Максимальное горение лампы ДРЛ наступает спустя около 7 минут. Это обусловлено тем, что в холодном состоянии ртуть, находящаяся в кварцевой горелки находится в виде капельки или налёта на стенках колбы. После запуска, ртуть под воздействием температуры медленно испаряется, постепенно улучшая качество разряда между основными электродами. После того как вся ртуть перейдёт в пары (газ), лампа ДРЛ выйдет на номинальный режим работы и максимальную светоотдачу. Также ещё следует добавить, что при выключении лампы ДРЛ повторное включение невозможно, пока лампа полностью не остынет. Это является одним из недостатков ламы, поскольку появляется зависимость от качества электроснабжения.

ДРЛ лампа довольно чувствительна к температуре и поэтому в её конструкции предусмотрена внешняя стеклянная колба. Она выполняет две функции:

  • во-первых, служит барьером между внешней средой и кварцевой горелкой, предотвращая остывание горелки (находящийся внутри колбы азот препятствует теплообмену);
  • во-вторых, поскольку при внутреннем разряде излучается не весь видимый спектр (только ультрафиолет и зелёный цвет), то люминофор, лежащий тонким слоем на внутренней стороне стеклянной колбы, преобразует ультрафиолет в спектр красного свечения.

В результате объединения синего, зелёного и красного излучения образуется белое свечение лампы ДРЛ.

Подключение к электросети четырех электродной лампы осуществляется через дроссель. Дроссель подбирается в соответствии с мощностью ДРЛ лампы. Роль дросселя — ограничивать ток, питающий лампу. Если включить лампу без дросселя, то она моментально сгорит, поскольку через неё пройдёт слишком большой электроток. В схему подключения желательно добавить конденсатор (не электролитический). Он будет влиять на реактивную мощность, а это сэкономит электроэнергию в два раза.

Дроссель ДРЛ-125 (1.15А) = конденсатор 12 мкф. (не меньше 250 В.)
Дроссель ДРЛ-250 (2.13А) = конденсатор 25 мкф. (не меньше 250 В.)
Дроссель ДРЛ-400 (3.25А) = конденсатор 32 мкф. (не меньше 250 В.)

Преимущества:

  • высокая световая отдача (до 60 лм/Вт)
  • компактность, при высокой еденичной мощности
  • способность работать при отрицательной температуре
  • длительный срок службы (около 15 тыс. часов)

Недостатки:

  • низкая цветопередача
  • пульсация светового потока
  • критичность к колебаниям напряжения сети

Лампа ДРЛ содержит внутри капельки ртути, если разобьется кварцевая колба, то пары ртути развеются в помещении на 25 м.кв. Обращайтесь с лампой ДРЛ осторожно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *