Меню Рубрики

Генератор меандра на ne555

Содержание

Генератор прямоугольных импульсов на NE555 (1Гц— 100кГц)

Представляю Вашему вниманию генератор прямоугольных импульсов(генератор меандра), собранный на основе таймера NE 555 .

Этот генератор может оказаться нужным дополнением в вашей измерительной лаборатории: для проверки различных трактов низкочастотных и высокочастотных схем, усилителей, радиоприемников, передатчиков, телевизоров, а также для экспериментов с различными цифровыми устройствами, и преобразователями.

Как видно из рисунка схема может выдавать шесть фиксированных частот. При необходимости получения определенной частоты, в выбранном диапазоне, необходимо заменить резистор номиналом в 68кОм цепочкой из резисторов 100кОм и 10кОм, как показано на рисунке.

Генератор прямоугольных импульсов на NE555 (1Гц— 100кГц)

Пример №7 — Простой генератор прямоугольных импульсов на NE555

В момент включения схемы, конденсатор C1 разряжен и на выходе 3 таймера NE555 находится высокий уровень. Затем конденсатор C1 через резистор R1 начинает постепенно заряжаться.

В момент, когда потенциал на конденсаторе, и соответственно на выводе 6 (стоп) таймера, достигнет примерно 2/3 напряжения питания, сигнал на выводе 3 переключится на низкий уровень. Теперь конденсатор через сопротивление R1 начинает разряжаться. Когда уровень напряжения на входе 2 (запуск) упадет до 1/3 Uпит., на выходе снова будет высокий уровень. И процесс повторится снова.

Если к выходу добавить еще RC-цепь (выделено красным цветом), то выходной сигнал по форме будет приближен к синусоиде.

Пример №8 — Генератор высокой частоты на NE555

Для таймера NE555 – частота в 360кГц является максимальной, поскольку при увеличении ее, работа схемы становится нестабильной.

Пример №9 — Генератор низкой частоты на NE555

Генератор низкой частоты по сути своей являются таймером времени. Увеличивая емкость электролитического конденсатора можно растянуть временной интервал. При интервале более 30 минут, показания схемы будут неточными.

Читайте также:  Где посмотреть полное название ноутбука

Пример №10 — Регулируемый генератор прямоугольных импульсов на NE555

Данная схема позволяет устанавливать на выходе таймера необходимую частоту генератора в пределах от 1 Гц до 100 кГц.

Пример №11 — Одновибратор на NE555

При подаче питания на схему одновибратора, на выводе 3 таймера NE555 будет низкий уровень. Запуск одновибратора происходит в момент подачи отрицательного импульса на вход 2 (запуск), при этом на его выходе будет высокий уровень в течение времени определяемое значениями R1 и C1.

Следует иметь в виду, что запускающий импульс должен быть короче выходного. Если же входной сигнал будет дольше, то пока на входе низкий уровень на выходе все время будет высокий. Подробнее о работе одновибратора на 555 таймере читайте здесь.

Пример №12 — Генератор, управляемый напряжением (ГУН) на NE555

Данный генератор иногда называют преобразователь частоты напряжением, так как частота может быть изменена путем изменения входного напряжения.

Как известно вывод 5 таймера 555 предназначен для управления длительностью импульсов на выходе путем подачи на него напряжения, которое должно составлять 2/3 от Uпит. При увеличении управляющего напряжения, увеличивается время заряда/разряда конденсатора и как следствие уменьшается частота на выходе генератора.

Источник: «Применение микросхемы 555», Колин М.

555 — аналоговая интегральная микросхема, универсальный таймер — устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искаженного в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи электроэнергии, устройства широтно-импульсного регулирования, таймеры и др.

В данной статье расскажу о построении генератора на этой микросхеме. Как написано выше мы уже знаем что микросхема формирует повторяющиеся импульсы со стабильными временными характеристиками, нам это и нужно.

Читайте также:  Для чего скупают катализатор автомобиля

Схема включения в астабильном режиме. На рисунке ниже это показано.

Так как у нас генератор импульсов, то мы должны знать их примерную частоту. Которую мы рассчитываем по формуле.

Значения R1 и R2 подставляются в Омах, C – в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса – t1 и промежутком между импульсами – t2. t = t1+t2.

Частота и период – понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C;
t2 = 0.693R2C;

С теорией закончили так что приступим к практике.

Разработал простенькую схему с доступными всем деталями.

Расскажу о ее особенностях. Как уже многие поняли, переключатель S2 используется для переключения рабочей частоты. Транзистор КТ805 используется для усиления сигнала (установить на небольшой радиатор). Резистор R4 служит для регулировки тока выходного сигнала. Сама микросхема служит генератором. Скважность и частоту рабочих импульсов изменяем резисторами R3 и R2. Диод служит для увеличения скважности(можно вообще исключить). Также присутствует шунт и индикатор работы, для него используется светодиод со встроенным ограничителем тока(можно использовать обычный светодиод ограничив ток резистором в 1 кОм). Собственно это все, далее покажу как выглядит рабочее устройство.

Вид сверху, видны переключатели рабочей частоты.

Снизу прикрепил памятку.

Данными подстроечными резисторами регулируется скважность и частота (на памятке видно их обозначение).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *