Меню Рубрики

Генератор преобразует механическую энергию в электрическую

Функция любого электрического генератора — вырабатывать электрический ток. Но на самом деле генератор ничего не производит, а лишь преобразует один вид энергии – в другой (как это и свойственно всем энергетическим процессам в природе). Чаще всего, произнося словосочетание «электрический генератор», имеют ввиду машину, преобразующую механическую энергию – в электрическую.

Механическая энергия может быть получена от расширяющегося под давлением газа или пара, от падающей воды или даже вручную. В любом случае для получения от генератора электрической энергии, ему необходимо сначала передать эту энергию в приемлемой форме, чаще всего в механической.

Генераторы, работающие посредством механического привода, – доминирующий вид генераторов в современном мире. Такие генераторы работают на атомных и гидроэлектростанциях, в автомобилях, в дизельных и бензиновых генераторах, на ветряках, в ручных динамо-машинах и т. д. Пар, бензин, ветер — служат источниками механической энергии, вращающей ротор генератора.

Пример работы простого электрогенератора:

На роторе генератора закреплена обмотка намагничивания или постоянные магниты. В последние годы широкое распространение получают генераторы с неодимовыми магнитами на роторе, так как современные неодимовые магниты не уступают по своим характеристикам мощной обмотке намагничивания.

Принцип выработки электрической энергии в генераторе основан на явлении электромагнитной индукции, которое заключается в том, что изменяющийся в пространстве магнитный поток индуцирует вокруг этого пространства электрическое поле.

И если в область где присутствует это индуцированное электрическое поле поместить проводник, то в нем наведется (будет индуцирована) ЭДС — электродвижущая сила, и между концами проводника можно будет наблюдать (измерить, использовать для питания нагрузки) соответствующее напряжение.

Изменяющийся магнитный поток получается в генераторе при помощи движущихся вместе с ротором магнитов или полюсных наконечников, намагничиваемых специальными обмотками — обмотками намагничивания. Обмотки намагничивания обычно получают питание через щетки и контактные кольца.

Применение генератора для электрификации модели железной дороги:

Провода, в которых наводится ЭДС (электрическое напряжение) в генераторе, представляют собой обмотку статора, расположенную, как правило, в магнитопроводе, закрепленном на неподвижной части электрической машины. Эта обмотка у генераторов разного типа может быть выполнена различным образом.

В трехфазных генераторах переменного тока приняты обмотки статора, изготовленные по трехфазной схеме, – три части такой трехфазной обмотки могут быть соединены «звездой» или «треугольником».

Соединение звездой позволяет получить от генератора напряжение большей величины, чем при соединении треугольником. Разница в напряжениях составит корень из 3 раз (около 1,73). Чем больше напряжение — тем меньше максимальный ток, который можно получить от данного генератора на нагрузке.

Работа электрического генератора на электростанции:

Номинальная мощность генератора зависит от нескольких факторов, которые определяют его номинальные ток и напряжение. Напряжение на выходных клеммах генератора зависит от длины обмотки (провода) статора, от скорости вращения ротора и от индукции магнитного поля на его полюсах. Чем эти параметры больше — тем большее напряжение получается с генератора на холостом ходу и под нагрузкой.

Читайте также:  Dremel moto saw f013ms20jc

Портативный генератор (мини-электростанция) для автономного электроснабжения:

Максимальный ток, который можно получить от генератора, теоретически ограничен его током короткого замыкания. Практически при номинальных оборотах он зависит от толщины провода обмотки статора и от общего магнитного потока ротора.

Если магнитного потока не достаточно, в некоторых случаях прибегают к увеличению оборотов. Но тогда генератор обязательно должен быть оснащен автоматическим регулятором напряжения, как это реализовано в автомобильных генераторах, которые способны выдавать приемлемый для зарядки аккумулятора ток в широком диапазоне оборотов.

Элект­рические машины предназначены для преобразования механичес­кой энергии в электрическую (генераторы) и электрической энергии в механическую (двигатели). Принцип действия всех элек­тромашин основан на законе электромагнитной индукции и возник­новении электромагнитной силы.

При перемещении прямолинейного проводника, замкнутого че­рез внешнюю цепь на нагрузку, с постоянной скоростью в одно­родном магнитном поле в проводнике индуктируется неизменяю­щаяся э.д. с. электромагнитной индукции, а в замкнутой цепи возникает электрический ток (рис. 22, а) . Направление э. д. с. в про­воднике определяют по правилу правой руки (рис. 22,в), а ее вели­чину — по формуле

где В — магнитная индукция, характеризующая интенсивность маг­нитного поля; l — активная длина проводника, пронизываемая силовыми линиями магнитного поля, м; v — скорость перемещения проводника в магнитном поле, м/с: а — угол между направлением скорости движения проводника и направлением вектора магнитной индукции.

Если проводник движется перпендикулярно силовым линиям магнитного поля, то а=90°, a э. д. с. будет максимальной:

Направление тока в проводнике совпадает с направлением э. д. с.

На проводник с током действует электромагнитная сила (Н).Эта сила препятствует перемещению проводника в магнитном поле. Направление электромагнитной силы определяют по правилу левой руки (рис. 22,г). Для ее преодоления необходима внешняя сила. Чтобы проводник перемещался с постоянной скоростью, не­обходимо приложить внешнюю силу, равную по величине и противоположно направленную электромагнитной силе.

Из сказанного следует, что механическая мощность, затрачиваемая на движение проводника в магнитном поле, пре­образуется в электрическую мощность в цепи проводника.

В судовых генераторах внешняя сила создается первичными двигателями (дизелем, турбиной).

Преобразование электрической энергии в механическую. При пропускании электрического тока одного направления через прямо­линейный проводник, расположенный в однородном магнитном по­ле, возникает электромагнитная сила, под действием ко­торой проводник перемещается в магнитном поле с линейной ско­ростью V (рис. 22,б) Направление движения проводника совпадает с направлением действия электромагнитной силы и определяется по правилу левой руки. Во время движения проводника в нем ин­дуктируется э д. с, направленная встречно напряжению U источника электроэнергии. Часть этого напряжения затрачива­ется на внутреннем сопротивлении проводника R.

Читайте также:  Журнал проверки переносных и передвижных электроприемников

Таким образом, электрическая мощность в проводнике, преобразуется в

механическую и частично расходуется на тепловые потери проводника Именно на этом принципе ос­нована работа электродвигателей.

2. Принципы получения переменного и постоянного тока.

В реальных электрических машинах проводники конструктивно изготовляют в виде рамок. Для уменьшения магнитного сопротивления машины, а следовательно, для увеличения значений э. д. с. и к. п. д. в гене­раторах, вращающего момента и к. п. д в электродвигателях ак­тивные стороны рамки укладывают в пазы цилиндрического сталь­ного сердечника (якоря), который совместно с закрепленной на нем рамкой может свободно вращаться в магнитном поле. Для этой же цели полюсам магнита придают особую форму, при которой сило­вые линии поля всегда направлены перпендикулярно направлению движения активных сторон рамки, а магнитная индукция в воздуш­ном зазоре между полюсами и якорем распределена равномерно (рис. 23,а).

Если при помощи сторонней силы якорь вместе с рамкой вра­щать в магнитном поле полюсов, то в соответствии с законом элект­ромагнитной индукции в активных сторонах аЬ и cd рамки индук­тируются э. д. с, направленные в одну сторону и суммируемые.

При переходе активных сторон через плоскость, перпендикуляр­ную магнитному полю, индуктируемые в них э. д. с. меняют свое направление. В рамке будет действовать э д. с, переменная как по величине, так и по направлению. Если концы рамки через кон­тактные кольца соединить с внешней целью, то в цепи будет протекать переменный ток.

Рис 23 Принцип получения переменного тока

1 — щетки. 2 контактные кольца, 3 стальной сердечник; 4 —рамка

Для выпрямления тока электрическая машина снабжена специ­альным устройством — коллектором. Простейший коллектор пред­ставляет собой два изолированных полукольца, к которым присое­диняют концы вращающейся в магнитном поле рамки (рис. 24,а).

С внешней цепью коллекторные пластины соединены при помо­щи неподвижных щеток, рабочие поверхности которых свободно скользят по вращающемуся коллектору 2. Щетки на коллекторе устанавливают так, чтобы они переходили с одного полукольца на другое в тот момент, когда индуктируемая в рамке э. д. с. равна нулю. При повороте на 90°, когда рамка займет горизонтальное положе­ние, в ее проводниках э. д. с. не индуктируется, так как они не пе­ресекают магнитного поля. Ток в контуре также равен нулю.

Рис 24. Принцип получения постоянного тока

При перемещении еще на 90* рамка снова займет вертикальное поло­жение, ее проводники поменяются местами и направление э. д. с и тока в них изменится. Так как щетки неподвижны, то к щетке 3 (+) по-прежнему подходит ток от рамки и далее через приемник направляется к щетке 1(-). Таким образом, во внешней цепи на­правление тока не изменяется.

Читайте также:  Дома из гиперпрессованного кирпича фото

График выпрямленных э д с и тока изображен на рис. 24,6. Выпрямленный ток имеет пульсирующий характер. Пульсацию то­ка можно уменьшить увеличением числа рамок, вращающихся в магнитном поле машины, и соответственно числа коллекторных пластин.

1)Преобразование механической энергии в электрическую.

При движении провода в направлении вектора скорости vв

плоскости, перпендикулярной магнитным линиям, в нем наводится ЭДС E.

Под действием ее в замкнутой цепи с сопротивлением R возникает и протекает ток I.

Таким образом, полученная проводником механическая энергия при

движении его в магнитном поле можно рассматривать как простейший

2)Преобразование электрической энергии в механическую.

Если по проводу длиной l, расположенному в однородном поле

перпендикулярно магнитным линиям, проходит ток I от источника с

напряжением U, то на него действует электромагнитная сила

F = B*I/t ,

направление которой определяется по правилу левой руки.

Под действием этой силы провод будет двигаться со скоростью v,

совершая механическую работу, и в нем будет индуктироваться ЭДС,

направление которой, найденное по правилу правой руки, противоположно току. Проводник, движущийся в магнитном поле, можно рассматривать как простейший электродвигатель.

Тема 1.4 Электрические машины постоянного тока.

Классификация машин постоянного тока по назначению и способу

Возбуждения.

По назначению машины постоянного тока делятся на:

двигатели (преобразование электрической энергии в механическую) и – генераторы (преобразование механической энергии в электрическую).

По способу возбуждения генераторы делятся на:

1)генераторы с самовозбуждением (генераторы параллельного возбуждения и генераторы последовательного возбуждения, компаундные генераторы); 2)генераторы независимого возбуждения.

Генераторы с самовозбуждением.

В генераторе с самовозбуждением питание обмотки главных полюсов

осуществляется напряжением самого генератора. При этом отпадает

необходимость в отдельном источнике энергии.

Генератор независимого возбуждения.

В генераторе независимого возбуждения основной магнитный поток

создается либо постоянным магнитом, либо электромагнитом (обмоткой

возбуждения), питаемым от независимого источника постоянного тока. Важнейшая особенность этой схемы – независимость тока возбуждения и магнитного потока главных полюсов от нагрузки генератора.

По способу возбуждения двигатели делятся на: двигатели

независимого и параллельного возбуждения.

Двигатели независимого возбуждения.

Цепь обмотки возбуждения питается от отдельного источника

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *