Меню Рубрики

P n переход и его свойства

Содержание

Читайте также:

  1. VI. Пара сил. Свойства сил.
  2. А 34 Волновыми свойствами
  3. А частные свойства различных частных элементов стихии Земля проявляются в более выраженной форме. Например, глины обладают целым рядом целебных свойств и т.д.
  4. А. Основные оптические свойства стекол.
  5. Алгоритм. Свойства алгоритма. Формы представления алгоритмов.
  6. В старшем дошкольном возрасте развиваются и свойства внимания.
  7. Важнейшими характеристиками минералов являются кристаллохимическая структура и состав. Все остальные свойства минералов вытекают из них или с ними взаимосвязаны.
  8. Вероятность перехода. Способ решения квантового уравнения для нахождения амплитуды перехода. Золотое правило Ферми.
  9. Виды и основные свойства папиллярных узоров пальцев рук
  10. ВЛИЯНИЕ СКОРОСТИ ОХЛАЖДЕНИЯ ИЗ АУСТЕНИТНОИ ОБЛАСТИ НА МИКРОСТРУКТУРУ И МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛИ
  11. Во-вторых, криминалистически значимыми становятся свойства участников процесса расследования, влияющие на его эффективность и определяющие его тактическую сущность.
  12. Волновые свойства света

К основным свойствам p-n перехода относятся:

– свойство односторонней проводимости;

– температурные свойства p-n перехода;

– частотные свойства p-n перехода;

– пробой p-n перехода.

Свойство односторонней проводимости p-n

Вольтамперной характеристикой (ВАХ) называется графически выраженная зависимость величины протекающего через p-n переход тока от величины приложенного напряжения. I=f(U).

Температурное свойство p-n перехода показывает, как изменяется

работа p-n перехода при изменении температуры

Частотные свойства p-n перехода показывают, как работает p-n переход при подаче на него переменного напряжения высокой частоты. Частотные свойства p-n перехода определяются двумя видами ёмкости перехода:

– ёмкость, обусловленная неподвижными зарядами ионов донорной и акцепторной примеси. Она называется зарядной, или барьерной ёмкостью;

– диффузионная ёмкость, обусловленная диффузией подвижных носителей заряда через p-n переход при прямом включении.

Вывод: чем меньше величина ёмкости p-n перехода, тем на более высоких частотах он может работать.

Явление сильного увеличения обратного тока при определённом обратном напряжении называется электрическим пробоем p-n перехода.

Различают электрический (лавинный, туннельный) и тепловой пробои.

3)Полупроводниковыерезисторы:варисторы,термо- Тензорезисторы Назначение. Характеристики, основные параметры.

Полупроводниковый резистор — полупроводниковый прибор с двумя выводами, в котором используется зависимость электрического сопротивления полупроводника от напряжения.

Тип резисторов Условное обозначение
Линейные резисторы
Варисторы
Терморезисторы: термисторы, позисторы
Тензорезисторы
Фоторезисторы

Первые две группы полупроводниковых резисторов в соответствии с этой классификацией – линейные резисторы и варисторы – имеют электрические характеристики, слабо зависящие от внешних факторов: температуры окружающей среды, вибрации, влажности, освещенности и др. Для остальных групп полупроводниковых резисторов, наоборот, характерна сильная зависимость их электрических характеристик от внешних факторов. Так, характеристики терморезисторов существенно зависят от температуры, характеристики тензорезисторов – от механических напряжений.

Варистор – это полупроводниковый резистор, сопротивление которого зависит от приложенного напряжения и, обладающий нелинейной симметричной вольт – амперной характеристикой (ВАХ).

Основные параметры варисторов:

где U и I – напряжение и ток варистора.

Для различных типов варисторов  = 2…6;

2)максимальное допустимое напряжение Umaxдоп (от десятков вольт до нескольких киловольт); 3)номинальная мощность рассеяния Рном (1…3Вт);4)температурный коэффициент сопротивления ТКС ; 5)предельная максимальная рабочая температура (60…70С).

Область применения варисторов: варисторыможноиспользовать на постоянном и переменномтокес частотой до нескольких килогерц. Они используются для защиты от перенапряжений, в стабилизаторах и ограничителях напряжения, в различных схемах автоматики.

Терморезисторы – это полупроводниковые резисторы, в которых используется зависимость электрического сопротивления полупроводника от температуры.

Основные параметры термисторов:

1)номинальное сопротивление – это его сопротивление при определенной температуре (обычно 20 0 С) (от нескольких Ом до нескольких кОм с допустимым отклонением от номинального сопротивления ±5, ±10 и ±20%);

Читайте также:  Вентиль устройство и принцип действия

2)температурный коэффициент сопротивления терморезистора показывает относительное изменение сопротивления терморезистора при изменении температуры на один градус:

3)максимально допустимая температура – это температура, при которой еще не происходит необратимых изменений параметров и характеристик терморезистора;

4)допустимая мощность рассеяния – это мощность, при которой терморезистор, находящийся в спокойном воздухе при температуре 20 0 С, разогревается при прохождении тока до максимально допустимой температуры;

5)постоянная времени терморезистора

Температурная характеристика терморезистора – это зависимость его сопротивления от температуры.

Рисунок 2.2 – Температурные характеристики терморезисторов:

1 – термистор; 2 – позистор

Терморезисторы (термисторы и позисторы) применяют для температурной стабилизации режима транзисторных усилителей, а также в различных устройствах измерения, контроля и автоматики (измерения контроля и автоматического регулирования температуры, температурной и пожарной сигнализации и др.).

Тензорезистор– это полупроводниковый резистор, в котором используется зависимость электрического сопротивления от механической деформации.

Назначение – измерение давлений и деформаций.

Основные параметры тензорезисторов:1)номинальное сопротивление тензорезистора – это сопротивление без деформации при t = 20 0 C;2)коэффициент тензочувствительности – отношение относительного изменения сопротивления к относительному изменению длины тензорезистора:

3)предельная деформация тензорезистора.

Деформационная характеристика – это зависимость относительного изменения сопротивления тензорезистора от относительной деформации.

Рисунок 2.3 – Деформационные характеристики тензорезисторов из кремния с электропроводностью р- и n-типов

Дата добавления: 2015-06-04 ; Просмотров: 7197 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

p-n-перехо́д или электронно-дырочный переход — область соприкосновения двух полупроводников с разными типами проводимости — дырочной (p, от англ. positive — положительная) и электронной (n, от англ. negative — отрицательная). Электрические процессы в p-n-переходах являются основой работы полупроводниковых приборов с нелинейной вольт-амперной характеристикой (диодов, транзисторов и других ).

Содержание

Области пространственного заряда [ править | править код ]

В полупроводнике p-типа, который получается посредством акцепторной примеси, концентрация дырок намного превышает концентрацию электронов. В полупроводнике n-типа, который получается посредством донорной примеси, концентрация электронов намного превышает концентрацию дырок. Если между двумя такими полупроводниками установить контакт, то возникнет диффузионный ток — основные носители заряда (электроны и дырки) хаотично перетекают из той области, где их больше, в ту область, где их меньше, и рекомбинируют друг с другом. Как следствие, вблизи границы между областями практически не будет свободных (подвижных) основных носителей заряда, но останутся ионы примесей с некомпенсированными зарядами [1] . Область в полупроводнике p-типа, которая примыкает к границе, получает при этом отрицательный заряд, приносимый электронами, а пограничная область в полупроводнике n-типа получает положительный заряд, приносимый дырками (точнее, теряет уносимый электронами отрицательный заряд).

Таким образом, на границе полупроводников образуются два слоя с пространственными зарядами противоположного знака, порождающие в переходе электрическое поле. Это поле вызывает дрейфовый ток в направлении, противоположном диффузионному току. В конце концов, между диффузионным и дрейфовым токами устанавливается динамическое равновесие, и изменение пространственных зарядов прекращается. Обеднённые области с неподвижными пространственными зарядами и называют p-n-переходом [2] .

Выпрямительные свойства [ править | править код ]

Если к слоям полупроводника приложено внешнее напряжение так, что создаваемое им электрическое поле направлено противоположно существующему в переходе полю, то динамическое равновесие нарушается, и диффузионный ток преобладает над дрейфовым током, быстро нарастая с повышением напряжения. Такое подключение напряжения к p-n-переходу называется прямым смещением (на область p-типа подан положительный потенциал относительно области n-типа).

Читайте также:  Вышивка гладью броши схемы

Если внешнее напряжение приложить так, чтобы созданное им поле было одного направления с полем в переходе, то это приведёт лишь к увеличению толщины слоёв пространственного заряда. Диффузионный ток уменьшится настолько, что преобладающим станет малый дрейфовый ток. Такое подключение напряжения к p-n-переходу называется обратным смещением (или запорным смещением), а протекающий при этом через переход суммарный ток, который определяется в основном тепловой или фотонной генерацией пар электрон-дырка, называется обратным током.

Ёмкость [ править | править код ]

Ёмкость p-n-перехода — это ёмкости объёмных зарядов, накопленных в полупроводниках на p-n-переходе и за его пределами. Ёмкость p-n-перехода нелинейна — она зависит от полярности и значения внешнего напряжения, приложенного к переходу. Различают два вида ёмкостей p-n-перехода: барьерная и диффузионная [3] .

Барьерная ёмкость [ править | править код ]

Барьерная (или зарядовая) ёмкость связана с изменением потенциального барьера в переходе и возникает при обратном смещении. Она эквивалентна ёмкости плоского конденсатора, в котором слоем диэлектрика служит запирающий слой, а обкладками — p и n-области перехода. Барьерная ёмкость зависит от площади перехода и относительной диэлектрической проницаемости полупроводника.

Диффузионная ёмкость [ править | править код ]

Диффузионная ёмкость обусловлена накоплением в области неосновных для неё носителей (электронов в p-области и дырок в n-области) при прямом смещении. Диффузионная ёмкость увеличивается с ростом прямого напряжения.

Воздействие радиации [ править | править код ]

Взаимодействие радиационного излучения с веществом — сложное явление. Условно принято рассматривать две стадии этого процесса: первичную и вторичную.

Первичные или прямые эффекты состоят в смещении электронов (ионизации), смещении атомов из узлов решётки, в возбуждении атомов или электронов без смещения и в ядерных превращениях вследствие непосредственного взаимодействия атомов вещества (мишени) с потоком частиц.

Вторичные эффекты состоят в дальнейшем возбуждении и нарушении структуры выбитыми электронами и атомами.

Наибольшего внимания заслуживают возбуждение электронов с образованием электронно-дырочных пар и процессы смещения атомов кристалла из узлов решетки, так как это приводит к образованию дефектов кристаллической структуры. Если электронно-дырочные пары образуются в области пространственного заряда, это приводит к возникновению тока, на противоположных контактах полупроводниковой структуры. Этот эффект используется для создания беттавольтаических источников питания со сверхдолгим сроком службы (десятки лет).

Облучение заряженными частицами большой энергии всегда приводит к первичной ионизации и, в зависимости от условий, к первичному смещению атомов. При передаче высоких энергий электронам решетки образуются дельта-излучение, высокоэнергетические электроны, которые рассеиваются от ионного трека, а также фотоны и рентгеновские кванты. При передаче атомам кристаллической решетки меньших энергий происходит возбуждение электронов и их переход в более высокоэнергетическую зону, в которой электроны термолизируют энергию путем испускания фотонов и фононов (нагрев) различных энергий. Наиболее общим эффектом рассеяния электронов и фотонов является эффект Комптона.

Методы формирования [ править | править код ]

Вплавление примесей [ править | править код ]

При вплавлении монокристалл нагревают до температуры плавления примеси, после чего часть кристалла растворяется в расплаве примеси. При охлаждении происходит рекристаллизация монокристалла с материалом примеси. Такой переход называется сплавным.

Читайте также:  Делаем ежика своими руками

Диффузия примесей [ править | править код ]

В основе технологии получения диффузного перехода лежит метод фотолитографии. Для создания диффузного перехода на поверхность кристалла наносится фоторезист — фоточувствительное вещество, которое полимеризуется засвечиванием. Неполимеризованные области смываются, производится травление плёнки диоксида кремния, и в образовавшиеся окна производят диффузию примеси в пластину кремния. Такой переход называется планарным.

Эпитаксиальное наращивание [ править | править код ]

Сущность эпитаксиального наращивания состоит в разложении некоторых химических соединений с примесью легирующих веществ на кристалле. При этом образуется поверхностный слой, структура которого становится продолжением структуры исходного проводника. Такой переход называется эпитаксиальным [3] .

Работа большинства полупроводниковых приборов основана на использовании pn-перехода. Физически это приконтактный слой толщиною в несколько микрон разновесных кристаллов.

На границе раздела возникает внутреннее электрическое поле p-n перехода, которое будет тормозящим для основных носителей заряда и будет их отбрасывать от границы раздела.

Приложим внешнее напряжение плюсом к p-области. Внешнее электрическое поле направлено навстречу внутреннему полю p-n перехода, что приводит к уменьшению потенциального барьера. Основные носители зарядов легко смогут преодолеть потенциальный барьер, и поэтому через p-n переход будет протекать сравнительно большой ток, вызванный основными носителями заряда.

Такое включение p-n перехода называется прямым, и ток через p-n переход, вызванный основными носителями заряда, также называется прямым током. Считается, что при прямом включении p-n переход открыт. Если подключить внешнее напряжение минусом на p-область, а плюсом на n-область, то возникает внешнее электрическое поле, линии напряжённости которого совпадают с внутренним полем p-n перехода. В результате это приведёт к увеличению потенциального барьера и ширины p-n перехода. Основные носители заряда не смогут преодолеть p-n переход, и считается, что p-n переход закрыт. Оба поля – и внутреннее и внешнее – являются ускоряющими для неосновных носителей заряда, поэтому неосновные носители заряда будут проходить через p-n переход, образуя очень маленький ток, который называется обратным током. Такое включение p-n перехода также называется обратным.

Свойства p-n перехода.

К основным свойствам p-n перехода относятся:

– свойство односторонней проводимости;

– температурные свойства p-n перехода;

– частотные свойства p-n перехода;

– пробой p-n перехода.

Свойство односторонней проводимости p-n

Вольтамперной характеристикой (ВАХ) называется графически выраженная зависимость величины протекающего через p-n переход тока от величины приложенного напряжения. I=f(U).

Температурное свойство p-n перехода показывает, как изменяется

работа p-n перехода при изменении температуры

Частотные свойства p-n перехода показывают, как работает p-n переход при подаче на него переменного напряжения высокой частоты. Частотные свойства p-n перехода определяются двумя видами ёмкости перехода:

– ёмкость, обусловленная неподвижными зарядами ионов донорной и акцепторной примеси. Она называется зарядной, или барьерной ёмкостью;

– диффузионная ёмкость, обусловленная диффузией подвижных носителей заряда через p-n переход при прямом включении.

Вывод: чем меньше величина ёмкости p-n перехода, тем на более высоких частотах он может работать.

Явление сильного увеличения обратного тока при определённом обратном напряжении называется электрическим пробоем p-n перехода.

Различают электрический (лавинный, туннельный) и тепловой пробои.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *