По двум тонким прямым проводникам, параллельным друг другу, текут одинаковые токи I (см. рисунок). Как направлен вектор индукции создаваемого ими магнитного поля в точке С?
Вектор магнитной индукции в точке C есть сумма векторов магнитной индукции от двух проводников. Согласно правилу правой руки: «Если отведенный в сторону большой палец правой руки расположить по направлению тока, то направление обхвата провода четырьмя пальцами покажет направление линий магнитной индукции». Следовательно, вектор магнитной индукции от нижнего проводника направлен в точке C от нас, а вектор магнитной индукции от верхнего проводника — к нам. Однако модуль вектора магнитной индукции ослабевает по мере удаления от проводника. Таким образом, суммарный вектор магнитной индукции в точке C направлен к нам.
Направление поля можно искать, используя также правило буравчика: «Если направление поступательного движения буравчика (винта) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции поля, создаваемого этим током».
Правильный ответ указан под номером 1.
Читайте также:
- Действие магнитного поля на проводник с током. Закон Ампера
- Магнитная индукция поля в центре кругового витка с током
- Магнитное поле. Вектор магнитной индукции. Магнитный момент рамки с током.
- Оказание доврачебной помощи при поражении электрическим током. Освобождение от действий электрического тока
- Оказание первой помощи при поражении электрическим током.
- Опасность поражения электрическим током.
- Относительно свитка западных: приемлем и сущих в Антиохии, исповедающих едино Божество Отца, и Сына, и Святаго Духа.
- Первая медицинская помощь при поражении электрическим током.
- Первая помощь при поражении электрическим током.
Магнитное поле, создаваемое элементом тока.
Для магнитного поля справедлив принцип суперпозиции: магнитная индукция поля B, создаваемого несколькими источниками, равна векторной сумме индукций отдельных источников:
B=B1+B2+… (9)
Поэтому магнитное поле тока можно рассматривать, как сумму полей всех движущихся зарядов. Поле, создаваемое участком проводника, повторяет свойства поля движущегося точечного заряда: такая же зависимость магнитной индукции от направления и расстояния; направление силовых линий находится по правилу буравчика (см. рис.9).
Магнитная индукция dB, создаваемая участком проводника длиной dL, рассчитывается по закону Био-Савара- Лапласа:
, (10)
где I – ток, протекающий через участок проводника; r – радиус-вектор, проведенный от участка проводника в точку, в которой рассчитывается магнитная индукция; dL – вектор, его направление совпадает с направлением тока в проводнике.
Поле, создаваемое проводником произвольной формы, находится интегрированием выражения (13), по всем элементам проводника dL:
, (11)
Результирующее поле зависит от расстояния до проводника, от конфигурации и размеров проводника, а также от силы тока в цепи.
Рассчитаем магнитную индукцию на оси круглой рамки с током.
Вектор магнитной индукции dB в точке А, создаваемой элементом рамки dL,находится по формуле (10) (см. рис.10)
Вектор dB перпендикулярен r и dL, он направлен под углом φ к оси кольца. Его величина равна
.
Полное магнитное поле от всего проводника с током находится интегрированием выражения (10) по всему контуру. Прежде, чем интегрировать, отметим, что из-за осевой симметрии задачи результирующая индукция должна быть направлена вертикально вверх. Горизонтальные компоненты вектора dB от различных участков кольца скомпенсируют друг друга, поэтому нас будет интересовать только вертикальная составляющая вектора dB
. (12)
Для всех участков кольца dL расстояния r до точки наблюдения одинаковы, также не изменяется и угол φ. Проинтегрируем (12) по dL,
.
С учетом того, что , а , получим
(13)
В центре кольца (z = 0) магнитная индукция равна
, (14)
где n –единичный вектор нормали к плоскости кольца.
Следует отметить, что в целом поле кольца с током существенно неоднородно (см. рис.11). Однако в середине витка это поле можно считать достаточно однородным.
Если в (13) ток I выразить через магнитный момент кольца pm=IS=πR 2 I, то поле вдоль оси кольца
. (15)
При большом удалении от витка поле спадает, как 1/z 3 . По такому же закону убывает напряженность электрического поля, создаваемого электрическим диполем. Поведение витка с током в магнитном поле полностью повторяет поведение электрического диполя в электрическом поле. Также виток с током подобен постоянному магниту, у которого имеется два полюса – северный и южный (см. далее). Поэтому виток с током можно рассматривать, как магнитный диполь.
Дата добавления: 2015-07-02 ; Просмотров: 1758 ; Нарушение авторских прав? ;
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Ж. Био и Ф. Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции :
Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.
Индукцию проводника с током можно представить как векторную сумму элементарных индукций создаваемых отдельными участками проводника. На опыте невозможно выделить отдельный участок проводника с током, так как постоянные токи всегда замкнуты. Можно измерить только суммарную индукцию магнитного поля, создаваемого всеми элементами тока. Закон Био–Савара определяет вклад в магнитную индукцию результирующего магнитного поля, создаваемый малым участком Δ проводника с током .
Здесь – расстояние от данного участка Δ до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ0 – магнитная постоянная. Направление вектора определяется правилом буравчика: оно совпадает с направлением вращения рукоятки буравчика при его поступательном перемещении вдоль тока. Рис. 1.17.1 иллюстрирует закон Био–Савара на примере магнитного поля прямолинейного проводника с током. Если просуммировать (проинтегрировать) вклады в магнитное поле всех отдельных участков прямолинейного проводника с током, то получится формула для магнитной индукции поля прямого тока:
которая уже приводилась в § 1.16.
Рисунок 1.17.1. |
Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле
где – радиус кругового проводника. Для определения направления вектора также можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.
Расчеты магнитного поля часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае можно пользаоваться теоремой о циркуляции вектора магнитной индукции , которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике.
Поясним понятие циркуляции вектора Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление его обхода. На каждом отдельном малом участке Δ этого контура можно определить касательную составляющую вектора в данном месте, то есть определить проекцию вектора на направление касательной к данному участку контура (рис. 1.17.2).
Рисунок 1.17.2. |
Циркуляцией вектора называют сумму произведений Δ, взятую по всему контуру :
Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур в то время, как другие токи могут находиться в стороне от контура.
Теорема о циркуляции утверждает, что циркуляция вектора магнитного поля постоянных токов по любому контуру всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур:
В качестве примера на рис. 1.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи 2 и 3 пронизывают контур в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, , а . Ток 1 не пронизывает контур .
Теорема о циркуляции в данном примере выражается соотношением:
Теорема о циркуляции в общем виде следует из закона Био–Савара и принципа суперпозиции.
Простейшим примером применения теоремы о циркуляции является вывод формулы для магнитной индукции поля прямолинейного проводника с током. Учитывая симметрию в данной задаче, контур целесообразно выбрать в виде окружности некоторого радиуса , лежащей в перпендикулярной проводнику плоскости. Центр окружности находится в некоторой точке проводника. В силу симметрии вектор направлен по касательной , а его модуль одинаков во всех точках окружности. Применение теоремы о циркуляции приводит к соотношению:
откуда следует формула для модуля магнитной индукции поля прямолинейного проводника с током, приведенная ранее.
Этот пример показывает, что теорема о циркуляции вектора магнитной индукции может быть использована для расчета магнитных полей, создаваемых симметричным распределением токов, когда из соображений симметрии можно «угадать» общую структуру поля.
Имеется немало практически важных примеров расчета магнитных полей с помощью теоремы о циркуляции. Одним из таких примеров является задача вычисления поля тороидальной катушки (рис. 1.17.3).
Рисунок 1.17.3. |
Предполагается, что катушка плотно, то есть виток к витку, намотана на немагнитный тороидальный сердечник. В такой катушке линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса изображена на рис. 1.17.3. Применим теорему о циркуляции к контуру в виде окружности, совпадающей с изображенной на рис. 1.17.3 линией индукции магнитного поля. Из соображений симметрии ясно, что модуль вектора одинаков вдоль всей этой линии. По теореме о циркуляции можно записать:
∙ 2π = μ0, |
где – полное число витков, а – ток, текущий по виткам катушки. Следовательно,
Таким образом, модуль вектора магнитной индукции в тороидальной катушке зависит от радиуса . Если сердечник катушки тонкий, то есть , то магнитное поле внутри катушки практически однородно. Величина = представляет собой число витков на единицу длины катушки. В этом случае
. |
В это выражение не входит радиус тора, поэтому оно справедливо и в предельном случае . Но в пределе каждую часть тороидальной катушки можно рассматривать как длинную прямолинейную катушку. Такие катушки называют соленоидами . Вдали от торцов соленоида модуль магнитной индукции выражается тем же соотношением, что и в случае тороидальной катушки.
На рис. 1.17.4 изображено магнитное поле катушки конечной длины. Следует обратить внимание на то, что в центральной части катушки магнитное поле практически однородно и значительно сильнее, чем вне катушки. На это указывает густота линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле целиком сосредоточено внутри него.
Рисунок 1.17.4. |
В случае бесконечно длинного соленоида выражение для модуля магнитной индукции можно получить непосредственно с помощью теоремы о циркуляции, применив ее к прямоугольному контуру, показанному на рис. 1.17.5.
Рисунок 1.17.5. |
Вектор магнитной индукции имеет отличную от нуля проекцию на направление обхода контура только на стороне . Следовательно, циркуляция вектора по контуру равна , где – длина стороны . Число витков соленоида, пронизывающих контур , равно , где – число витков на единицу длины соленоида, а полный ток, пронизывающий контур, равен . Согласно теореме о циркуляции,
= μ0, |
откуда
= μ0 . |
Это выражение совпадает с полученной ранее формулой для магнитного поля тонкой тороидальной катушки.