Меню Рубрики

Внутри источника постоянного тока установлен ограничивающий резистор

Содержание

Неразветвлённая электрическая цепь постоянного тока состоит из источника тока и подключённого к его выводам внешнего резистора. Как изменятся при уменьшении сопротивления резистора сила тока в цепи и ЭДС источника?

Для каждой величины определите соответствующий характер изменения:

Запишите в ответ выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Сила тока в цепи ЭДС источника

При уменьшении сопротивления резистора сила тока в цепи увеличится. ЭДС источника не зависит от сопротивления резистора.

Здравствуйте! Смотрю задачи с сыном на простейшие схемы, и у меня возник вопрос, что вы имеете в виду когда в условии говорите: источник напряжения, источник тока.

Источник напряжения – это источник, ЭДС которого не зависит от сопротивления нагрузки. (Идеальный) (не идеальный – есть ограничения по току). Есть активный элемент (стабилизатор).

Источник тока – это источник, ток которого не зависит от сопротивления нагрузки. (Идеальный) (не идеальный ограничен по напряжению). (Усилитель).

Ни в одной задаче эти определения не используются. И уж тогда проще говорить батарейка, идеальная или не идеальная. Ведь в школьном курсе нет таких задач.

По всей видимости, авторы задачи (источник задачи указывается внизу под текстом) ис­точ­ником на­пря­же­ния и ис­точ­ником тока называют любой источник электрической энергии.

Итак, резистор… Базовый элемент построения электрической цепи.

Работа резистора заключается в ограничении тока, протекающего по цепи. НЕ в превращении тока в тепло, а именно в ограничении тока. То есть, без резистора по цепи течет большой ток, встроили резистор – ток уменьшился. В этом заключается его работа, совершая которую данный элемент электрической цепи выделяет тепло.

Пример с лампочкой

Рассмотрим работу резистора на примере лампочки на схеме ниже. Имеем источник питания, лампочку, амперметр, измеряющий ток, проходящий через цепь. И Резистор. Когда резистор в цепи отсутствует, через лампочку по цепи побежит большой ток, например, 0,75А. Лампочка горит ярко. Встроили в цепь резистор — у тока появился труднопреодолимый барьер, протекающий по цепи ток снизился до 0,2А. Лампочка горит менее ярко. Стоит отметить, что яркость, с которой горит лампочка, зависит так же и от напряжения на ней. Чем выше напряжение — тем ярче.

Ограничение тока резистором

Кроме того, на резисторе происходит падение напряжения. Барьер не только задерживает ток, но и «съедает» часть напряжения, приложенного источником питания к цепи. Рассмотрим это падение на рисунке ниже. Имеем источник питания на 12 вольт. На всякий случай амперметр, два вольтметра про запас, лампочку и резистор. Включаем цепь без резистора(слева). Напряжение на лампочке 12 вольт. Подключаем резистор — часть напряжения упала на нем. Вольтметр(снизу на схеме справа) показывает 5В. На лампочку остались остальные 12В-5В=7В. Вольтметр на лампочке показал 7В.

Падение напряжение на резисторе

Разумеется, оба примера являются абстрактными, неточными в плане чисел и рассчитаны на объяснение сути процесса, происходящего в резисторе.

Основная характеристика резистора — сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем больший ток он способен ограничить, тем больше тепла он выделяет, тем больше напряжения падает на нем.

Читайте также:  General security gs 100 12

Основной закон всего электричества. Связывает между собой Напряжение(V), Силу тока(I) и Сопротивление(R).

V=I*R

Интерпретировать эти символы на человеческий язык можно по-разному. Главное — уметь применить для каждой конкретной цепи. Давайте используем Закон Ома для нашей цепи с резистором и лампочкой, рассмотренной выше, и рассчитаем сопротивление резистора, при котором ток от источника питания на 12В ограничится до 0,2. При этом считаем сопротивление лампочки равным 0.

V=I*R => R=V/I => R= 12В / 0,2А => R=60Ом

Итак. Если встроить в цепь с источником питания и лампочкой, сопротивление которой равно 0, резистор номиналом 60 Ом, тогда ток, протекающий по цепи, будет составлять 0,2А.

Микропрогер, знай и помни! Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств.

Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение на этом участке цепи. P=I*U. Единица измерения 1Вт.

При протекании тока через резистор совершается работа по ограничению электрического тока. При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду. Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит. Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи.

Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.

Рассчитаем мощность резистора для нашей цепи с лампочкой. Итак. Имеем ток, проходящий по цепи(а значит и через резистор), равный 0,2А. Падение напряжения на резисторе равно 5В (не 12В, не 7В, а именно 5 — те самые 5, которые вольтметр показывает на резисторе). Это значит, что мощность тока через резистор равна P=I*V=0,2А*5В=1Вт. Делаем вывод: резистор для нашей цепи должен иметь максимальную мощность не менее(а лучше более) 1Вт. Иначе он перегреется и выйдет из строя.

Соединение резисторов

Резисторы в цепях электрического тока имеют последовательное и параллельное соединение.

Последовательное соединение резисторов

При последовательном соединении общее сопротивление резисторов является суммой сопротивлений каждого резистора в соединении:

Последовательное соединение резисторов

Параллельное соединение резисторов

При параллельном соединении общее сопротивление резисторов рассчитывается по формуле:

Параллельное соединение резисторов

Остались вопросы? Напишите комментарий. Мы ответим и поможем разобраться =)

Для чего нужен токоограничивающий резистор в базе транзистора? Читали предыдущую статью? Если да, то это очень хорошо, если нет, срочно читайте, иначе не поймёте о чем речь в этой статье.

Для чего ставят резистор в базу

Итак, у некоторых возникли непонятки с резистором, который цепляется к базе транзистора. Вроде бы понятно, что он ограничивает силу тока, но непонятно зачем. Давайте вспомним нашу картинку с предыдущей статьи:

Видите резистор на 500 Ом? Что он там делает и для чего нужен, мы с вами разберем в этой статье.

Читайте также:  Запеканка с грудкой и овощами в духовке

Итак, у нас есть всеми нами любимый и знакомый транзистор КТ815Б – классика Советского Союза ;-)

Вспоминаем его цоколевку (расположение выводов):

Включение транзистора в схему с ОЭ (Общим Эмиттером) будет выглядеть приблизительно вот так:

Как вы видите, в этой схеме мы подключали также лампочку и источник тока к коллектору-эмиттеру.

Откинем пока что лампу и источник Bat2 и просто цепляемся крокодилами от Блока питания на выводы базы и эмиттера:

Плюс от блока питания на базу, а минус на эмиттер.

Теперь давайте будем увеличивать напряжение от нуля и до какого-то значения. Итак, кручу крутилку до 0,6 В и только тогда амперметр на блоке питания показал 10 мА:

Кручу дальше и получаю следующие результаты (слева-направо):

Дальше добавлять напряжение страшновато, так как транзистор становится горячим. Кстати, первый подопытный транзистор скончался, испустив белый дым, под напряжением в 1,5 В. Слишком резко крутанул крутилку).

Давайте построим график по нашим точкам, или как говорится в народе, Вольт амперную характеристику (ВАХ):

Чуток коряво конечно, но смысл уловить можно.

Среди профи-электронщиков этот график называется входной характеристикой биполярного транзистора, при нулевом напряжении на коллектор-эмиттере.

Как вы помните, транзистор можно схематически представить, как два диода, соединенные или анодами, или катодами (кто не помнит, читаем эту статью). В нашем случае транзистор КТ815Б является транзистором NPN, следовательно, его можно представить вот так:

Так что это получается? Мы подавали напряжение на диод? Ну да, все верно)

Так вот, для диода ВАХ будет выглядеть как-то вот так:

Что тут можно увидеть? Подавая напряжение на диод в прямом включении (на анод плюс, на катод – минус), мы видим, что через диод ток начинает течь только тогда, когда напряжение становится больше, чем 0,5 В. Далее подавая напряжение на диод чуточку больше, сила тока через диод возрастает непропорционально. Напряжения добавили чуть-чуть, а сила тока стала в разы больше.

Так как переход база-эмиттер – это что ни на есть самый простой диод, то следовательно, малое изменение напряжения в плюс вызовет большое изменение силы тока. Настолько большое, что транзистор можно сгореть! Для нашего подопечного максимально допустимый постоянный ток базы составляет 0,5 А. Я же выжал 0,7 А, но транзистор за эти пару секунд чуть не вскипел.

Что же это получается? Если напряжение изменится в плюс даже на каких-то десятки Вольт, то транзистор сгорит? Да, все именно так. Но как нам теперь быть? Неужели придется использовать высокостабильный блок питания?

Но выход есть проще некуда, и называется он токоограничивающий резистор.

Давайте проведем два небольших опыта. Для этого к базе цепляем резистор на 10 Ом:

Смотрим теперь на показания блока питания (слево-направо):

Строим график по полученным точкам:

Сравниваем с графиком без резистора:

Обратите внимание на вертикальную шкалу силы тока базы (Iбазы). При одном вольте на графике без резистора базовый ток был уже почти 0,7 А! А с резистором на 10 Ом базовый при 1 В уже был каких-то 0,02 А. Чувствуете разницу?

Читайте также:  Автомобильная тепловая пушка 12 вольт

Почему же так все получилось? Дело в том, что на резисторе “осело” лишнее напряжение. Досконально это схема будет выглядеть вот таким образом:

По цепи, которую я отметил красными проводками, течёт электрический ток. Нагрузкой для электрического тока является резистор и диод транзистора. А так как они соединены последовательно, то вспоминая статью Делитель напряжения можно сказать, что и на диоде транзистора и на резисторе R падает напряжение. А сумма этих напряжений равняется напряжению батареи Bat. В данном случае вместо батареи я использовал блок питания. То есть можно записать, что

Проверяем, так ли оно на самом деле?

В нашем случае используем тот же самый резистор на 10 Ом. Выставляем на блоке питания напряжение 1 В.

Видим, что сила тока, протекающая по цепи равна 20 мА.

Итак, замеряем падение напряжения на резисторе:

А теперь падение напряжения на базе-эмиттере:

Итого: 0,32 + 0,74 = 1,06 В

0,06 В спишем на погрешность вольтметра блока питания).

Ну как, теперь понятно, почему всё так происходит?

Небольшое лирическое отступление. Так как резистор рассчитан на определенную мощность, нужно таким образом подбирать резистор, чтобы он не колыхнул ярким пламенем. Какая же мощность сейчас в данный момент рассеивается на резисторе? Так как в нашем случае нагрузки подцеплены последовательно (резистор и диод транзистора), сила тока, проходящая через каждую нагрузку везде будет одинаковой. Значит, резистор в данный момент рассеивает мощность, равную

P = IU = 0,02х0,32 = 0,0064 Вт.

Мой резистор рассчитан максимум на 0,25 Вт, значит все гуд. Если на резисторе будет рассеиваться мощность больше, чем 0,25 Вт, то резистор сгорит. Имейте это ввиду, когда будете проектировать свои электронные поделки.

А что будет, если взять резистор еще больше по номиналу? Давайте попробуем. Возьмем резистор на 100 Ом:

И проводим аналогичный опыт. Вот наши показания (слева-направо):

Строим по ним график:

Заключение

Из всего выше сказанного, показанного и написанного делаем простые и не очень выводы:

1) Резистор в базе используется для того, чтобы плавно регулировать силу тока в базе, а также для ограничения силы тока, которая может спалить транзистор. Для чего нам плавно регулировать ток базы, мы с вами еще обсудим.

2) Чем больше номинал резистора, тем больше станет диапазон напряжения для регулировки силы тока в базе, тем самым можно плавнее регулировать этот самый ток.

На рисунке (художник из меня так себе) мы видим резистор, который качается на качелях, прикрепленных к графику входной характеристики транзистора ну и следовательно, чем больше его номинал, тем больше он прогибает график))).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *