Меню Рубрики

Вольт амперная характеристика полупроводника

Вольт-амперная характеристика (ВАХ) — зависимость тока, протекающего через сопротивление, от напряжения на этом сопротивлении, выраженная графически. ВАХ могут быть линейными и нелинейными, и в зависимости от этого сопротивления и цепи, содержащие данные сопротивления, разделяются на линейные и нелинейные.

Итак, вольтамперная характеристика — зависимость электрического напряжения от силы тока в электрической цепи или её отдельных элементах (реостате, конденсаторе и др.). У линейных элементов электрической цепи вольтамперная характеристика — прямая линия.

При повышении напряжения, приложенного к полупроводнику, величина тока в нем возрастает значительно быстрее напряжения (рис. 1), т. е. наблюдается нелинейная зависимость между током и напряжением. Если при перемене напряжения U на обратное (—U) изменение тока в полупроводнике имеет такой же характер, но в обратном направлении, то такой полупроводник обладает симметричной вольтамперной характеристикой .

В полупроводниковых выпрямительных диодах подбором полупроводников с разного типа электропроводностью (n-типа и р-типа) добиваются несимметричной вольтамперной характеристики (рис. 2).

В результате этого при одной полуволне переменного напряжения полупроводниковый выпрямитель будет пропускать ток. Это ток, протекающий в прямом направлении Iпр, который быстро возрастает с повышением первой полуволны переменного напряжения.

При воздействии же второй полуволны напряжения система двух полупроводников (в плоскостном выпрямителе) не пропускает тока в обратном направлении Iобр. Очень незначительная величина тока Iобр протекает через р-n-переход вследствие наличия в полупроводниках неосновных носителей тока (электронов в полупроводнике р-типа и дырок в полупроводнике n-типа). Причиной этого является большое сопротивление переходного слоя (р-n-переход), возникающего между полупроводником р-типа и полупроводником n-типа.

С дальнейшим повышением второй полуволны переменного напряжения обратный ток Iобр начнет медленно возрастать и может достигнуть значений, при которых наступит пробой запорного слоя (р-n-перехода).

Рис. 1. Вольт-амперная характеристика полупроводника

Рис. 2. Несимметричная вольтамперная характеристика полупроводникового выпрямителя (плоскостной диод)

Чем больше отношение величины прямого тока к величине обратного тока (измеренных при одинаковых значениях напряжения), тем лучше свойства выпрямителя. Это оценивается величиной коэффициента выпрямления, представляющего собой отношение прямого тока I’пр к обратному I’обр при одной и той же величине напряжения:

Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.[1]

СОБСТВЕННАЯ ПРОВОДИМОСТЬ – проводимость полупроводника, обусловленная электронами, возбуждёнными из валентной зоны в зону проводимости и дырками, образовавшимися в валентной зоне. Концентрации ni таких (зонных) электронов н дырок равны, и их можно выразить через эфф. плотности состояний в зоне проводимости (Nc)и в валентной зоне (Nv), ширину запрещённой зоны и абс. темп-ру Т:

Читайте также:  Горшок в горшке для цветов

Т. к. проводимость полупроводника пропорциональна концентрации свободных носителей заряда и их подвижности , то в пренебрежении слабыми степенными зависимостями Nc, Nvи от темп-ры для собств. полупроводников можно получить соотношение:

При наличии примесей, обусловливающих примесную проводимость полупроводника, С. п. можно наблюдать в диапазоне изменения темп-ры полупроводника, в к-ром зависимость линейна. Лит. см. при ст. Полупроводники. И. Л. Бейиихес.

Примесная проводимость полупроводников — электрическая проводимость, обусловленная наличием в полупроводнике донорных или акцепторных примесей.

Примесная проводимость, как правило, намного превышает собственную, и поэтому электрические свойства полупроводников определяются типом и количеством введенных в него легирующих примесей.

ЗАПИРАЮЩИЙ СЛОЙ – тонкий слой на границе контакта полупроводника с металлом или на границе раздела областей с различными типами проводимости, обладающий свойствами односторонней проводимости. При образовании контакта разнородных материалов часть электронов из области с проводимостью n-типа переходит в область p-типа, а часть дырок из p-области переходит в n-область. Это приводит к появлению контактной разности потенциалов и электрического поля, направленного от n-области к p-области. Слой, в котором действует электрическое поле, лишается носителей заряда (электроны выталкиваются этим полем в n-область, а дырки в p-область) и приобретает высокое электрическое сопротивление. Запирающий слой обладает рядом ценных свойств, используемых в разнообразных полупроводниковых приборах.

Вольт-амперная характеристика (ВАХ) — график зависимости тока через двухполюсник от напряжения на этом двухполюснике. Вольт-амперная характеристика описывает поведение двухполюсника на постоянном токе. Чаще всего рассматривают ВАХ нелинейных элементов (степень нелинейности определяется коэффициентом нелинейности ), поскольку для линейных элементов ВАХ представляет собой прямую линию и не представляет особого интереса.

Характерные примеры элементов, обладающих существенно нелинейной ВАХ: диод, динистор, стабилитрон.

Для трехполюсных элементов (таких, как транзистор, тиристор или ламповый триод) часто строят семейства кривых, являющимися ВАХ для двухполюсника при так или иначе заданных параметрах на третьем выводе элемента.

Необходимо отметить, что в реальной схеме, особенно работающей с относительно высокими частотами (близкими к границам рабочего частотного диапазона) для данного устройства реальная зависимость напряжения от времени может пробегать по траекториям, весьма далеким от «идеальной» ВАХ. Чаще всего это связано с емкостью или другими инерционными свойствами элемента.

Читайте также:  Абстракция в бежевых тонах

p-n переход- область объемных зарядов, прилегающая к поверхности контакта p и n слоев.контакт двух полупроводников с разным типом проводимости. Комбинация двух типов проводниковых слоев обладает свойством пропускать ток в одном направлении лучше, чем в другом (прямой и обратный ток, прямое и обратное напряжение).

Папиллярные узоры пальцев рук – маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Полупроводниковые приборы

Диоды.

Полупроводниковым диодом называется устройство, пред­ставляющее собой два соединенных полупроводника различ­ной проводимости.

Обозначение на схемах:

Катод

V или VD – обозначение диода

VS – обозначение диодной сборки

V7 Анод Цифра после V, показывает номер диода в схеме

Анод – это полупроводник P-типа Катод – это полупроводник N-типа

При приложении внешнего напряжения к диоду в прямом направлении («+» на анод, а « – » на катод) уменьшается потенциальный барьер, увеличивается диффузия – диод открыт (закоротка).

При приложении напряжения в обратном направлении увеличивается потенциальный барьер, прекращается диффузия – диод закрыт (разрыв).

Вольтамперная характеристика (ВАХ) полупроводникового диода.

Uэл.проб. = 10 ÷1000 В – напряжение электрического пробоя.

Uнас. = 0,3 ÷ 1 В – напряжение насыщения.

Ia и Ua – анодный ток и напряжение.

Участок I: – рабочий участок (прямая ветвь ВАХ)

Участки II, III, IV, – обратная ветвь ВАХ (не рабочий участок)

Участок II: Если приложить к диоду обратное напряжение – диод закрыт, но все равно через него будет протекать малый обратный ток (ток дрейфа, тепловой ток), обусловленный движением не основных носителей.

Участок III: Участок электрического пробоя. Если приложить достаточно большое напряжение, неосновные носители будут разгоняться и при соударении с узлами кристаллической решетки происходит ударная ионизация, которая в свою очередь приводит к лавинному пробою (вследствие чего резко возрастает ток)

Электрический пробой является обратимым, после снятия напряжения P-N-переход восстанавливается.

Участок IV: Участок теплового пробоя. Возрастает ток, следовательно, увеличивается мощность, что приводит к нагреву диода и он сгорает.

Вслед за электрическим пробоем, очень быстро следует тепловой, поэтому диоды при электрическом пробое не работают. Тепловой пробой – необратим.

Читайте также:  Детский стиральный порошок без фосфатов

Вольтамперная характеристика идеального диода (вентиля)

Основные параметры полупроводниковых приборов:

1. Максимально допустимый средний за период прямой ток (IПР. СР.)

– это такой ток, который диод способен пропустить в прямом направлении.

Величина допустимого среднего за период прямого тока равна 70% от тока теплового пробоя.

По прямому току диоды делятся на три группы:

1) Диоды малой мощности (IПР.СР 10 А)

Диоды малой мощности не требуют дополнительного теплоотвода (тепло отводится с помощью корпуса диода)

Для диодов средней и большой мощности, которые не эффективно отводят тепло своими корпусами, требуется дополнительны теплоотвод (радиатор – кубик металла, в котором с помощью литья или фрезерования делают шипы, в результате чего возрастает поверхность теплоотвода. Материал – медь, бронза, алюминий, силумин)

2. Постоянное прямое напряжение (Uпр.)

Постоянное прямое напряжение – это падение напряжения между анодом и катодом при протекании максимально допустимого прямого постоянного тока. Проявляется особенно при малом напряжении питания.

Постоянное прямое напряжение зависит от материала диодов (германий – Ge, кремний – Si)

Германиевые диоды обозначают – ГД (1Д)

Кремниевые диоды обозначают – КД (2Д)

3. Повторяющееся импульсное обратное максимальное напряжение (Uобр. max)

Электрический пробой идет по амплитудному значению (импульсу) Uобр. max ≈ 0.7UЭл. пробоя (10÷100 В)

Для мощных диодов Uобр. max= 1200 В.

Этот параметр иногда называют классом диода (12 класс -Uобр. max= 1200 В)

4. Максимальный обратный ток диода (Imax ..обр.)

Соответствует максимальному обратному напряжению (составляет единицы mA).

Для кремниевых диодов максимальный обратный ток в два раза меньше, чем для германиевых.

5. Дифференциальное (динамическое) сопротивление.

В зависимости от конструкции и материала диоды имеют различное назначение:

1. Выпрямительные диоды. Имеют большую площадь кон­такта и используются для выпрямления переменного тока.

2. Детекторные диоды. Имеют малую собственнуюемкостьперехода и используются для работы на высоких час­тотах.

3. Стабилитроны. Изготовляются из специального мате­риала, не разрушающегося при пробое. У такого диода при пробое напряжение остается постоянным. Применяется для ограничения электрических сигналов по току и напряжению. (Используются в стабилизаторах напряжения.)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *