где E — энергия тела, m — его масса, c — скорость света в вакууме, равная 299 792 458 м/с.
Данная концепция может быть интерпретирована двояко:
* с одной стороны, концепция означает, что масса неподвижного тела (так называемая масса покоя) является мерой внутренней энергии этого тела [1];
* с другой стороны, можно утверждать, что любому виду энергии соответствует некая масса. Например, было введено понятие релятивистской массы как характеристики кинетической энергии движущегося тела [2].
В современной теоретической физике концепцию эквивалентности массы и энергии обычно используют в первом смысле [3]. Главной причиной, почему приписывание массы любому виду энергии считается неудачным, является следующая из этого полная синонимичность понятий массы и энергии. Кроме того, неаккуратное использование такого принципа может запутывать и в конечном итоге не является оправданным. Таким образом, в настоящее время термин «релятивистская масса» в профессиональной литературе практически не встречается, а когда говорят о массе, имеют в виду массу покоящегося тела. В то же время термин «релятивистская масса» используется для качественных рассуждений в прикладных вопросах, а также в образовательном процессе и в научно-популярной литературе. При этом под этим термином понимается увеличение инертных свойств движущегося тела.
В наиболее универсальной форме принцип был сформулирован впервые Альбертом Эйнштейном в 1905 году, однако представления о связи энергии и инертных свойств тела развивались и в более ранних работах других исследователей.
где E — энергия тела, m — его масса, c — скорость света в вакууме, равная 299 792 458 м/с.
Данная концепция может быть интерпретирована двояко:
* с одной стороны, концепция означает, что масса неподвижного тела (так называемая масса покоя) является мерой внутренней энергии этого тела [1];
* с другой стороны, можно утверждать, что любому виду энергии соответствует некая масса. Например, было введено понятие релятивистской массы как характеристики кинетической энергии движущегося тела [2].
В современной теоретической физике концепцию эквивалентности массы и энергии обычно используют в первом смысле [3]. Главной причиной, почему приписывание массы любому виду энергии считается неудачным, является следующая из этого полная синонимичность понятий массы и энергии. Кроме того, неаккуратное использование такого принципа может запутывать и в конечном итоге не является оправданным. Таким образом, в настоящее время термин «релятивистская масса» в профессиональной литературе практически не встречается, а когда говорят о массе, имеют в виду массу покоящегося тела. В то же время термин «релятивистская масса» используется для качественных рассуждений в прикладных вопросах, а также в образовательном процессе и в научно-популярной литературе. При этом под этим термином понимается увеличение инертных свойств движущегося тела.
В наиболее универсальной форме принцип был сформулирован впервые Альбертом Эйнштейном в 1905 году, однако представления о связи энергии и инертных свойств тела развивались и в более ранних работах других исследователей.
Вся энергия заряженного конденсатора сосредотачивается в электрическом поле между его пластинами. Энергию, накопленную в конденсаторе, можно определить следующим образом. Представим себе, что мы заряжаем конденсатор не сразу, а постепенно, перенося электрические заряды с одной его пластины на другую.
При перенесении первого заряда работа, произведенная нами, будет небольшой. На перенесение второго заряда мы затратим больше энергии, так как в результате перенесения первого заряда между пластинами конденсатора будет уже существовать разность потенциалов, которую нам придется преодолевать, третий, четвертый и вообще каждый последующий заряд будет переносить все труднее и труднее, т. е. на перенесение их придется затрачивать все больше и больше энергии. Пусть мы перенесем таким образом некоторое количество электричества, которое мы обозначим буквой Q.
Вся энергия, затраченная нами при заряде конденсатора, сосредоточится в электрическом поле между его пластинами. Напряжение между пластинами конденсатора в конце заряда мы обозначим буквой U.
Как мы уже заметили, разность потенциалов в процессе заряда не остается постоянной, а постепенно увеличивается от нуля — в начале заряда — до своего конечного значения U.
Для упрощения вычисления энергии допустим, что мы перенесли весь электрический заряд Q с одной пластины конденсатора на другую не маленькими порциями, а сразу. Но при этом мы должны считать, что напряжение между пластинами конденсатора было не ноль, как в начале заряда, и не U, как в конце заряда, а равнялось среднему значению между нулем и U, т. е. половине U. Таким образом, энергия, запасенная в электрическом поле конденсатора, будет равна половине напряжения U, умноженной на общее количество перенесенного электричества Q.
Полученный результат мы можем записать в виде следующей математической формулы:
W = UQ/2 (1)
Если напряжение в этой формуле будет выражено в вольтах, а количество электричества — в кулонах, то энергия W получится в джоулях. Если мы вспомним, что заряд, накопленный на конденсаторе, равен Q = CU, то формулу (1) можно будет записать окончательно в следующем виде:
W = CU 2 /2 (2)
Выражение (2) говорит нам о том, что энергия, сосредоточенная в поле конденсатора, равна половине произведения емкости конденсатора на квадрат напряжения между его пластинами.
Этот вывод имеет очень важное значение при изучении раздела радиотехники о колебательных контурах.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!