ЗАКОН ОМА (по имени немецкого физика Г. Ома (1787-1854)) – единица электрического сопротивления. Обозначение Ом. Ом – сопротивление проводника, между концами которого при силе тока 1 А возникает напряжение 1 В. Определяющее уравнение для электрического сопротивления R= U / I.
Закон Ома является основным законом электротехники, без которого нельзя обойтись при расчете электрических цепей. Взаимосвязь между падением напряжения на проводнике, его сопротивлением и силой тока легко запоминается в виде треугольника, в вершинах которого расположены символы U, I, R.
ЗАКОН ДЖОУЛЯ-ЛЕНЦА (по имени английского физика Дж.П.Джоуля и русского физика Э.Х.Ленца) – закон, характеризующий тепловое действие электрического тока.
Согласно закону, количество теплоты Q (в джоулях), выделяющейся в проводнике при прохождении по нему постоянного электрического тока, зависит от силы тока I (в амперах), сопротивления проводника R (в омах) и времени его прохождения t (в секундах): Q = I 2 Rt.
Преобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах. Тот же эффект в электрических машинах и аппаратах приводит к непроизвольным затратам энергии (потере энергии и снижении КПД). Тепло, вызывая нагрев этих устройств, ограничивает их нагрузку. При перегрузке повышение температуры может вызвать повреждение изоляции или сокращение срока службы установки.
ЗАКОН КИРХГОФА (по имени немецкого физика Г.Р.Кирхгофа (1824-1887)) – два основных закона электрических цепей. Первый закон устанавливает связь между суммой токов, направленных к узлу соединения (положительные), и суммой токов, направленных от узла (отрицательные).
Алгебраическая сумма сил токов In, сходящихся в любой точке разветвления проводников (узле), равна нулю, т.е. SUMM(In)= 0. Например, для узла A можно записать: I1 + I2 = I3 + I4 или I1 + I2 – I3 – I4 = 0.
Второй закон устанавливает связь между суммой электродвижущих сил и суммой падений напряжений на сопротивлениях замкнутого контура электрической цепи. Токи, совпадающие с произвольно выбранным направлением обхода контура, считаются положительными, а не совпадающие – отрицательными.
Алгебраическая сумма мгновенных значений ЭДС всех источников напряжения в любом контуре электрической цепи равна алгебраической сумме мгновенных значений падений напряжений на всех сопротивлениях того же контура SUMM(En)=SUMM(InRn). Переставив SUMM(InRn) в левую часть уравнения, получим SUMM(En) – SUMM(InRn) = 0. Алгебраическая сумма мгновенных значений напряжений на всех элементах замкнутого контура электрической цепи равна нулю.
ЗАКОН ПОЛНОГО ТОКА один из основных законов электромагнитного поля. Устанавливает взаимосвязь между магнитной силой и величиной тока, проходящего через поверхность. Под полным током понимается алгебраическая сумма токов, пронизывающих поверхность, ограниченную замкнутым контуром.
Намагничивающая сила вдоль контура равна полному току, проходящему сквозь поверхность, ограниченную этим контуром. В общем случае напряженность поля на различных участках магнитной линии может иметь разные значения, и тогда намагничивающая сила будет равна сумме намагничивающих сил каждой линии.
ЗАКОН ЛЕНЦА – основное правило, охватывающее все случаи электромагнитной индукции и позволяющее установить направление возникающей э.д.с. индукции.
Согласно закону Ленца это направление во всех случаях таково, что ток, созданный возникшей э.д.с., препятствует тем изменениям, которые вызвали появление э.д.с. индукции. Этот закон является качественной формулировкой закона сохранения энергии в применении к электромагнитной индукции.
ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ , закон Фарадея – закон, устанавливающий взаимосвязь между магнитными и электрическими явлениями. ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Величина ЭДС поля зависит от скорости изменения магнитного потока.
ЗАКОНЫ ФАРАДЕЯ (по имени английского физика М.Фарадея (1791-1867)) – основные законы электролиза.
Устанавливают взаимосвязь между количеством электричества, проходящего через электропроводящий раствор (электролит), и количеством вещества, выделяющегося на электродах.
При пропускании через электролит постоянного тока I в течение секунды q = It, m = kIt.
Второй закон ФАРАДЕЯ: электрохимические эквиваленты элементов прямо пропорциональны их химическим эквивалентам.
ПРАВИЛО БУРАВЧИКА — правило, позволяющее определить направление магнитного поля, зависящее от направления электрического тока. При совпадении поступательного движения буравчика с протекающим током направление вращения его рукоятки указывает направление магнитных линий. Или при совпадении направления вращения рукоятки буравчика с направлением тока в контуре поступательное движение буравчика указывает направление магнитных линий, пронизывающих поверхность, ограниченную контуром.
ПРАВИЛО ЛЕВОЙ РУКИ — правило, позволяющее определить направление электромагнитной силы. Если ладонь левой руки расположена так, что вектор магнитной индукции входит в нее (вытянутые четыре пальца совпадают с направлением тока), то отогнутый под прямым углом большой палец левой руки показывает направление электромагнитной силы.
Правило левой руки
ПРАВИЛО ПРАВОЙ РУКИ — правило, позволяющее определить направление наведенной эдс электромагнитной индукции. Ладонь правой руки располагают так, чтобы магнитные линии входили в нее. Отогнутый под прямым углом большой палец совмещают с направлением движения проводника. Вытянутые четыре пальца укажут направление индуктированной эдс.
Расчет и анализ электрических цепей основан на использовании законов Ома, Кирхгофа и Джоуля-Ленца. При рассмотрении принципа действия различных электротехнических устройств, а также расчета и анализа их параметров и характеристик необходимо дополнительное знание закона Ампера, закона электромагнитной индукции, закона полного тока и ряда других законов.
В настоящей работе основные законы электротехники формулируются применительно к электрическим цепям постоянного тока.
В цепях переменного тока такая формулировка законов оказывается справедливой только для мгновенных значений напряжений и токов, в связи с чем их использование имеет ряд особенностей, рассматриваемых в соответствующих разделах курса «Электротехника и электроника»: «Электрические цепи синусоидального тока», «Переходные процессы в линейных электрических цепях» и др.
1.1. Закон Ома
Закон Ома показывает причинно-следственную связь между напряжением Uи величиной токаI. Различают закон Ома для участка цепи и замкнутой цепи, а также закон Ома для участка цепи, содержащего источник электродвижущей силы (э.д.с.).
Закон Ома для участка цепи
На рисунке 1 показан участок электрической цепи, представляющей собой резистор R, на концах которого действует напряжение U (разность электрических потенциалов) и по которому протекает электрический ток I.
Резисторомназывается элемент электрической цепи,который предназначен для ограничения величины тока, и параметром которого является электрическое сопротивление R. В резисторе происходит необратимый процесс преобразования энергии электрической в энергию тепловую.
Закон Ома для участка цепиформулируется следующим образом:токIпрямо пропорционален напряжениюUи записывается в виде:
где I – сила тока (ток, величина тока). Единица измерения тока – ампер [A] . Ампер – такая величина тока, при которой через поперечное сечение проводника в одну секунду протекает электрический заряд q в один кулон [Кл]. 1 А = Кл/с. Таким образом, сила тока I – это количество электричества q, протекающее через сечение проводника в единицу времени t. Математически ток i представляет собой в общем случае производную от заряда q по времени t:;
–коэффициент пропорциональности между током и напряжением. R – электрическое сопротивление, измеряемое в омах [Ом]. Проводник обладает сопротивлением в один Ом, если по нему протекает ток один ампер при напряжении в один вольт [Ом] = [В] / [A];
–электрическая проводимость, то есть величина, обратная сопротивлению; единица ее измерения – сименс [См], [См] = [Ом -1 ].
Электрическое сопротивление твердого проводника зависит от его геометрических размеров и материала, из которого он изготовлен. Оно рассчитывается по формуле:
где l– длина проводника в метрах [м];
S– сечение проводника [м 2 ];
ρ – удельное сопротивление материала [Ом∙м].
В формулу (2) можно подставить величину удельной проводимости материала :
лектрическое сопротивление проводников зависит от температуры. Эта зависимость может быть рассчитана по формуле
где Rt– сопротивление при температуреt;
t0– начальная температура проводника, которая принимается равной 20°С;
α[град -1 ] –температурный коэффициент сопротивления–ТКR, который для металлов и большинства их сплавов – положительная величина (α> 0).
В частности для меди и алюминия ТКRα0,004 град -1 . Например, приt0= 20°С и повышении температуры до величиныt= 120°С (рабочая температура большинства электротехнических установок) согласно выражению (3)
то есть сопротивление медных и алюминиевых проводов увеличивается на 40%, что необходимо учитывать при тепловых и вентиляционных расчетах на стадии проектирования электрических машин, трансформаторов и другого электрооборудования.
Увеличение электрического сопротивления металлов (ТКR > 0) объясняется тем, что при повышении температуры увеличиваются частота и амплитуда колебаний узлов кристаллической решетки, и повышается число их столкновений с движущимися направленно электронами.
ВОПРОСЫ для письменной работы
для поступления в магистратуру
Профиль: 1. 110802.68 «Электротехнологии и электрооборудование в сельском хозяйстве»
2. 110800.68 «Энергообеспечение и электротехнологии в АПК»
ЗАКОН ОМА (по имени немецкого физика Г. Ома (1787-1854)) – единица электрического сопротивления. Обозначение Ом. Ом – сопротивление проводника, между концами которого при силе тока 1 А возникает напряжение 1 В. Определяющее уравнение для электрического сопротивления R= U / I.
Закон Ома является основным законом электротехники, без которого нельзя обойтись при расчете электрических цепей. Взаимосвязь между падением напряжения на проводнике, его сопротивлением и силой тока легко запоминается в виде треугольника, в вершинах которого расположены символы U, I, R.
Самый главный закон электротехники – закон Ома
Что такое удельное электрическое сопротивление
ЗАКОН ДЖОУЛЯ-ЛЕНЦА (по имени английского физика Дж.П.Джоуля и русского физика Э.Х.Ленца) – закон, характеризующий тепловое действие электрического тока.
Согласно закону, количество теплоты Q (в джоулях), выделяющейся в проводнике при прохождении по нему постоянного электрического тока, зависит от силы тока I (в амперах), сопротивления проводника R (в омах) и времени его прохождения t (в секундах): Q = I 2 Rt.
Преобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах. Тот же эффект в электрических машинах и аппаратах приводит к непроизвольным затратам энергии (потере энергии и снижении КПД). Тепло, вызывая нагрев этих устройств, ограничивает их нагрузку. При перегрузке повышение температуры может вызвать повреждение изоляции или сокращение срока службы установки.
Как провод нагревается электрическим током
Как влияет нагрев на величину сопротивления
ЗАКОН КИРХГОФА (по имени немецкого физика Г.Р.Кирхгофа (1824-1887)) – два основных закона электрических цепей. Первый закон устанавливает связь между суммой токов, направленных к узлу соединения (положительные), и суммой токов, направленных от узла (отрицательные).
Алгебраическая сумма сил токов In, сходящихся в любой точке разветвления проводников (узле), равна нулю, т.е. SUMM(In)= 0. Например, для узла A можно записать: I1 + I2 = I3 + I4 или I1 + I2 – I3 – I4 = 0.
Второй закон устанавливает связь между суммой электродвижущих сил и суммой падений напряжений на сопротивлениях замкнутого контура электрической цепи. Токи, совпадающие с произвольно выбранным направлением обхода контура, считаются положительными, а не совпадающие – отрицательными.
Алгебраическая сумма мгновенных значений ЭДС всех источников напряжения в любом контуре электрической цепи равна алгебраической сумме мгновенных значений падений напряжений на всех сопротивлениях того же контура SUMM(En)=SUMM(InRn). Переставив SUMM(InRn) в левую часть уравнения, получим SUMM(En) – SUMM(InRn) = 0. Алгебраическая сумма мгновенных значений напряжений на всех элементах замкнутого контура электрической цепи равна нулю.
ЗАКОН ПОЛНОГО ТОКА один из основных законов электромагнитного поля. Устанавливает взаимосвязь между магнитной силой и величиной тока, проходящего через поверхность. Под полным током понимается алгебраическая сумма токов, пронизывающих поверхность, ограниченную замкнутым контуром.
Намагничивающая сила вдоль контура равна полному току, проходящему сквозь поверхность, ограниченную этим контуром. В общем случае напряженность поля на различных участках магнитной линии может иметь разные значения, и тогда намагничивающая сила будет равна сумме намагничивающих сил каждой линии.
ЗАКОН ЛЕНЦА – основное правило, охватывающее все случаи электромагнитной индукции и позволяющее установить направление возникающей э.д.с. индукции.
Согласно закону Ленца это направление во всех случаях таково, что ток, созданный возникшей э.д.с., препятствует тем изменениям, которые вызвали появление э.д.с. индукции. Этот закон является качественной формулировкой закона сохранения энергии в применении к электромагнитной индукции.
ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ, закон Фарадея – закон, устанавливающий взаимосвязь между магнитными и электрическими явлениями. ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Величина ЭДС поля зависит от скорости изменения магнитного потока.
ЗАКОНЫ ФАРАДЕЯ (по имени английского физика М.Фарадея (1791-1867)) – основные законы электролиза.
Устанавливают взаимосвязь между количеством электричества, проходящего через электропроводящий раствор (электролит), и количеством вещества, выделяющегося на электродах.
При пропускании через электролит постоянного тока I в течение секунды q = It, m = kIt.
Второй закон ФАРАДЕЯ: электрохимические эквиваленты элементов прямо пропорциональны их химическим эквивалентам.
ПРАВИЛО БУРАВЧИКА — правило, позволяющее определить направление магнитного поля, зависящее от направления электрического тока. При совпадении поступательного движения буравчика с протекающим током направление вращения его рукоятки указывает направление магнитных линий. Или при совпадении направления вращения рукоятки буравчика с направлением тока в контуре поступательное движение буравчика указывает направление магнитных линий, пронизывающих поверхность, ограниченную контуром.
ПРАВИЛО ЛЕВОЙ РУКИ — правило, позволяющее определить направление электромагнитной силы. Если ладонь левой руки расположена так, что вектор магнитной индукции входит в нее (вытянутые четыре пальца совпадают с направлением тока), то отогнутый под прямым углом большой палец левой руки показывает направление электромагнитной силы.
Правило левой руки
ПРАВИЛО ПРАВОЙ РУКИ — правило, позволяющее определить направление наведенной эдс электромагнитной индукции. Ладонь правой руки располагают так, чтобы магнитные линии входили в нее. Отогнутый под прямым углом большой палец совмещают с направлением движения проводника. Вытянутые четыре пальца укажут направление индуктированной эдс.