Меню Рубрики

Зарядное для никель кадмиевых аккумуляторов своими руками

Предлагаю вариант несложного зарядного устройства. Для его сборки можно использовать детали из отслужившей свой век отечественной аппаратуры.

Прибор представляет собой регулируемый стабилизированный источник тока, позволяющий поддерживать заданное значение зарядного тока в течение всего процесса зарядки аккумуляторов. Схема устройства приведена на рис. 1.

Сетевое напряжение понижает трансформатор Т1, выпрямляет диодный мост VD1 и сглаживает конденсатор С1. Выпрямленное и сглаженное напряжение поступает на стабилизатор тока, собранный на транзисторах VT1, VT2, стабилитроне VD2 и резисторах R2—R6.

Принцип действия стабилизатора тока весьма прост: на транзисторе VT1 собран обычный стабилизатор напряжения, на базу которого подано образцовое напряжение со стабилитрона VD2, а в цепь эмиттера включены резисторы R4—R6, которые задают ток зарядки аккумуляторов. Поскольку напряжение на базе транзистора VT1, а значит, и на этих резисторах стабилизировано, то и ток, протекающий через них и участок эмиттер—коллектор транзистора VT1, стабилен. Следовательно, стабилен и ток базы транзистора VT2, который регулирует зарядный ток аккумуляторов. Резисторами R5 и R6 осуществляют соответственно грубую и точную регулировки тока зарядки. Зарядный ток контролируют по показаниям миллиамперметра РА1. Диод VD3 предотвращает разрядку подключенных аккумуляторов при выключении устройства. Светодиод HL1 индицирует подключение зарядного устройства к сети.

В устройстве вместо указанных на схеме можно использовать любые транзисторы серий КТ315 (VT1), КТ814, КТ816 (VT2). Транзистор VT2 желательно установить на небольшой теплоотвод площадью 8. 10 см2. Допустимый прямой ток диодов VD1 и VD3 должен быть не менее максимального тока зарядки аккумуляторов. Стабилитрон VD2 — любой на напряжение 10. 12 В. Постоянные резисторы — МЛТ-0,5, переменные — любые. Конденсатор С1 — любой оксидный, емкостью не менее указанной на схеме и номинальным напряжением не менее амплитудного значения напряжения на вторичной обмотке трансформатора Т1.

Трансформатор — выходной трансформатор кадровой развертки лампового телевизора ТВК-70Л2. Его магнитопровод необходимо перебрать встык, удалив бумажную изолирующую прокладку в зазоре между торцами пластин магнитопровода. Первичная обмотка остается, а вторичную необходимо перемотать. Первичная обмотка содержит 3000 витков провода ПЭВ-1 диаметром 0,12 мм, вторичная (перемотанная) — 330 витков провода ПЭВ-2 диаметром 0,23 мм. Сечение магнитопровода — 18×23 мм. Напряжение на вторичной обмотке доработанного трансформатора должно находиться в пределах 22. 25 В. Миллиамперметр постоянного тока — любой с током полного отклонения 50 мА.

Все детали зарядного устройства, за исключением трансформатора Т1, светодиода HL1, переменных резисторов R5 и R6, миллиамперметра РА1 и регулирующего транзистора VT2, собирают на печатной плате, чертеж которой приведен на рис. 2.

Внешний вид собранного устройства показан на рис. 3.

Алгоритм зарядки весьма прост: разряженные аккумуляторы подключа ют к зарядному устройству и заряжают в течение 16 ч. Зарядный ток выбирают исходя из номинальной емкости аккумулятора. Для этого емкость аккумулятора (в А-ч) умножают на 100 и получают зарядный ток в миллиамперах. Например, для аккумулятора ЦНК-0,45 зарядный ток равен 45 мА, а для батареи 7Д-0,125 — 12,5 мА.

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

Автор:
Опубликовано 01.01.1970

Так, товарищи. Сейчас мы с вами будем заряжать аккумуляторы, просто, качественно, а главное – быстро. Для чего воспользуемся микросхемой MAX713 от компании MAXIM. Это специализированная микросхема, заточенная именно под зарядку указанных типов аккумуляторов.

Итак, что же она умеет – подходите ближе, сейчас увидите.
Итак MAX713 позволяет:

  • заряжать Никель-Кадмиевые и Никель-МеталлоГидридные аккумуляторы в количестве от 1 до 16 штук одновременно;
  • в режиме быстрого заряда регулировать ток заряда от С/3 до 4С, где С – емкость аккумулятора;
  • в режиме медленного заряда доводить аккумуляторы до кондиции током С/16;
  • отслеживание состояния аккумулятора и автоматический переход от быстрого заряда к медленному;
  • в отсутствии зарядного тока через микросхему "утекает" всего 5мкА от аккумуляторов;
  • возможность отключения заряда по температурным датчикам или по таймеру;

Ну и хватит – и так вон сколько получилось.
Как обычно, чтобы разговаривать предметно, смотрим на схему:

Читайте также:  Если сломался тен в стиральной машине

Вообще говоря, как мы помним еще со староглиняных времен, заряжать аккумуляторы рекомендовалось током 0,1С, где С – емкость аккумулятора. Однако, с тех пор утекло много пива и производители научились делать более совершенные аккумуляторы, позволяющие учинять над собой такое безобразие, как быстрый заряд (Fast Charge).
"It"s okey", говорят они – вы можете заряжать наши аккумуляторы гораздо большим током – главное не превышать значение 4С, иначе может случиться big-bada-bum.

Разумеется, чем больший зарядный ток используется в процессе зарядки, тем меньше времени нужно на эту самую зарядку. Однако, все же, увлекаться сильно не стоит – ток током, а долговечность аккумулятора тоже не последнее дело. Поэтому, в MAX713 реализован не только быстрый, но и медленный заряд (Trickle Charge), который включается по достижении аккумулятором полного заряда большим зарядным током.

Схема, показанная выше позволяет заряжать два аккумулятора, ёмкостью по 1000мА/ч каждый, током С/2, то есть 500мА.
Имеется индикация включения питания – HL1 и индикация быстрого заряда – HL2.
Аккумуляторы включаются последовательно.
Входное напряжение должно быть равно 6 вольтам. Вы еще тут? А ну бегом за паяльником!

Что? Вам надо заряжать четыре аккумулятора сразу? И не 1000мА/ч, а 1200?
Ну ладно, тогда не бежим за паяльником, а слушаем дальше.

Как я уже говорил, эта микросхема позволяет заряжать до 16 аккумуляторов, током до 4С. Итак, что же от нас требуется, чтобы спроектировать зарядное устройство под наши конкретные цели?

  1. Определиться с зарядным током аккумуляторов. Неплохо было бы узнать, какой максимальный зарядный ток рекомендует производитель. Ну а если не узнали, тогда уж на свой страх и риск. Для начала, я бы не стал превышать С/2.
  2. Решить сколько аккумуляторов нужно заряжать одновременно. После этого, согласно Таблице 1 определить, куда припаивать выводы PGM0 и PGM1. Разумеется, чтобы не перепаивать каждый раз микросхему, нужно предусмотреть переключатель, если нужно заряжать разное количество аккумуляторов.
  3. Подобрать входное напряжение на зарядное устройство. Оно может быть рассчитано по формуле:
    U=2+(1,9*N),
    где N – количество аккумуляторов
    Но это напряжение не может быть меньше 6 вольт.
    То есть, если вы будете заряжать даже один аккумулятор – входное напряжение должно составлять 6 вольт.
  4. Определить мощность выходного транзистора, после чего по справочнику подобрать подходящий. Мощность определяется так:
    P=(U in – U batt )*I charge ,
    где:
    U in – максимальное входное напряжение,
    U batt – напряжение заряжаемых аккумуляторов – суммарное, разумеется,
    I charge – зарядный ток.
  5. Посчитать сопротивление R1. R1=(V in -5)/5 – сопротивление получается в килоомах, чтобы получить Омы надо посчитанное значение умножить на 1000.
  6. Определить сопротивление R6. R6=0.25/I charge Если I charge подставляется в амперах, сопротивление мы получим в Омах, если а миллиамперах, то в килоомах. Не теряйтесь.
  7. Выбираем время заряда. Это нужно для того, чтобы в случае неисправного аккумулятора, зарядное устройство не гоняло его, бедолагу бесконечное число часов, а отключило по таймеру, даже если аккумулятор и не зарядился. Для выбора времени заряда пользуемся Таблицей 2. И прикручиваем ноги PGM2 и PGM3 согласно этой таблице. Разумеется, не забудьте учесть при этом зарядный ток, который был выбран, а то может случиться так, что устройство отключится раньше, чем зарядится аккумулятор.

Собственно говоря и все. Дальше будут таблицы.

Таблица 1. Задание количества заряжаемых аккумуляторов.

Количество аккумуляторов

Соединить PGM 1 с…

Соединить PGM 0 с…

Изготовление зарядного устройства (ЗУ) для NiCd аккумуляторов

Зарядные устройства для NiCd аккумуляторов достаточно дешевы. Обычно изготовление внешнего зарядного устройства под популярные размеры аккумуляторов, таких как ААА, АА, C и D, не отнимет много сил и времени. Умение сконструировать подобное устройство окажется полезным и тем, кто захочет встроить ЗУ в робота. В отличие от большинства дешевых ЗУ, которые продолжают заряжать аккумулятор током порядка C/10 даже после его полной зарядки, наше устройство уменьшает зарядный ток до порядка С/30 после того, как батареи оказались полностью заряженными. Такая процедура рекомендована для NiCd аккумуляторов и поможет обеспечить их длительную работоспособность.

Читайте также:  Внешний аккумулятор для телефона юлмарт

Следующая информация позволит вам самостоятельно изготовить ЗУ для стандартного NiCd аккумулятора.

Зарядное устройство представляет собой отдельный блок, схема его подключения приведена на рис. 3.7 в иллюстративных целях. Такую схему легко разместить в корпусе робота, при этом потребуется разъем для соединения с ЗУ. Кроме того, необходим двухполюсный двухпозиционный переключатель, помещенный между разъемом и остальной схемой. Этот переключатель соединяет источник питания (аккумулятор) либо с остальной схемой робота, либо с ЗУ. Обесточивание робота необходимо потому, что в противном случае ток заряда аккумулятора уменьшится (см. рис. 3.7).

Рис. 3.7. Двухпозиционный переключатель, управляющий зарядом АКБ

Питание зарядного устройства можно осуществлять, используя либо обычный трансформатор, либо портативный блок питания, совмещенный со штекерной вилкой (типа используемых для питания плееров). Я предпочитаю последний, поскольку он дает на выходе постоянный ток. Если вы используете трансформатор, то вам дополнительно потребуются сетевой предохранитель, диодный мост, сглаживающий конденсатор и соединительные провода.

В любом случае вы должны подобрать характеристики трансформатора или выпрямителя под тип заряжаемой батареи. Подбор выпрямителя по выходному напряжению и току снизит рассеиваемую мощность на регуляторе LM317; например, не стоит использовать трансформатор на 12 В для зарядки 6-вольтовых батарей.

На рис. 3.8 показана схема блока питания ЗУ. Выходное напряжение может равняться 6, 12, 18, 24 или 36 В в зависимости от типа используемого трансформатора, диодного моста и конденсатора.

Рис. 3.8. Сетевой трансформатор и выпрямительный блок

Схема зарядного устройства приведена на рис. 3.9. Она включает в себя регулятор напряжения LM317 и ограничивающий ток резистор. Величина сопротивления ограничительного резистора зависит от силы тока, необходимого для зарядки аккумуляторной батареи.

Рис. 3.9. Схема зарядного устройства

Ограничительный резистор

Большинство производителей NiCd аккумуляторов рекомендуют заряжать их током, равным 1/10 от их емкости, что обозначается C/10. Таким образом, батарея размера АА емкостью 0,85 Ач необходимо заряжать током C/10 или 85 мА в течение 14 часов. После полной зарядки батареи производители рекомендуют снизить ток до уровня порядка C/30 (1/30 емкости батареи) для поддержания батареи в полностью заряженном состоянии без риска перезаряда или иных повреждений.

В нашем случае рассчитаем характеристики ЗУ для зарядки аккумулятора, состоящего из 4 последовательно соединенных элементов С-типа. Емкость каждого элемента составляет 2000 мАч. Таким образом, ток C/10 составит 200 мА. Стандартное напряжение каждого элемента составляет приблизительно 1,3 В, следовательно, напряжение батареи 4 х 1,3 = 5,2 В. Следовательно, можно использовать 6-вольтовый трансформатор, поддерживающий ток не менее 200 мА.

Для расчета сопротивления ограничивающего ток резистора используется формула:

R=1,25/Icc

Где Icc необходимый ток. Подставляя в формулу 200 мА (0,2 А) получаем:

1,25/0,2=6,25 Ом

Таким образом, сопротивление ограничительного резистора должно быть порядка 6,25 Ом. На схеме (рис. 3.9) этот резистор обозначен R2. Заметим, что на схеме резистор R2 имеет номинал 5 Ом. Это ближайший стандартный номинал резистора по отношению к рассчитанному.

C/30 резистор

Чтобы уменьшить силу тока до значения C/30, мы последовательно включаем еще один резистор, номинал которого составляет 2R или около 12,5 Ом. На схеме этот резистор обозначен как R3. Также подбирается резистор ближайшего стандартного номинала. В нашем случае его значение равно 10 Ом.

Принцип работы ЗУ

В ЗУ в качестве источника постоянного тока используется регулятор напряжения LM317. Ограничительный резистор для значения тока C/10 обозначен на схеме R2 (см. рис. 3.9). Значение R2 равно 5 Ом в сравнении с расчетным значением 6,25 Ом. Использование стандартного резистора близкого номинала не нарушит правильную работу ЗУ. Резистор для значения тока C/30 обозначен как R3. Стандартный номинал этого резистора также близок к расчетному и не нарушает нормальной работы ЗУ. Позже вы увидите, что ЗУ способно осуществлять и «быструю» зарядку аккумуляторов, поскольку имеет устройство контроля выходного потенциала.

Читайте также:  Диван с подъемной кроватью

V1 представляет собой переменный резистор номиналом 5 кОм. Он предназначен для отпирания тиристора после полной зарядки NiCd батареи. Тиристор в свою очередь переключает двухпозиционное реле, имеющее две группы контактов.

При подаче напряжения на схему ток протекает через регулятор LM317, заряжая батарею током порядка C/10. Резистор R3 при этом закорочен одной из групп контактов реле. Ток также протекает через резистор R1, ограничивающий ток светодиодов D1 и D2. После включения питания загорается красный светодиод D1, который сигнализирует о том, что происходит зарядка.

В процессе зарядки напряжение на потенциометре V1 возрастает. После 14 часов напряжение оказывается достаточным для отпирания тиристора. Через открытый тиристор напряжение поступает на обмотку двухпозиционного реле. Реле включается, красный светодиод гаснет и зажигается зеленый светодиод. Зеленый светодиод показывает, что батарея полностью заряжена. Другая группа контактов реле размыкает закороченный резистор R3. Включение резистора R3 уменьшает зарядный ток до порядка C/30. Диод D3 блокирует протекание тока из аккумулятора в схему ЗУ.

Определение напряжения срабатывания V1

Для нормальной работы схемы необходимо, чтобы тиристор отпирался только после полной зарядки NiCd батареи. Наиболее просто это сделать следующим образом: вставить полностью разряженную батарею в ЗУ, заряжать ее в течение 14 часов, а потом подрегулировать V1. После завершения процесса зарядки медленно поворачивать движок потенциометра V1 до срабатывания реле. При этом должен зажечься светодиод зеленого цвета.

Особенности конструкции

При самостоятельном конструировании ЗУ обратите внимание на следующее. Наиболее критичным является подбор ограничительных резисторов для значений тока C/10 и C/30. Для расчета их номиналов воспользуйтесь приведенными формулами. Рассеиваемая мощность этих резисторов порядка 2 Вт.

Если зарядный ток достаточно велик (более 250 мА), то для отвода тепла снабдите схему LM317 радиатором. Если ЗУ включить до соединения с батареей, то моментально сработает реле, включится зеленый светодиод и зарядный ток окажется равным C/30.

Если ЗУ будет использоваться при более высоких значениях напряжений – пропорционально увеличьте сопротивление R1, ограничивающее ток, протекающий через светодиоды. Например, для напряжения 12 В сопротивление R1 будет равно 680 Ом, для напряжения 24 В – 1,2 кОм соответственно.

При больших значениях напряжения может потребоваться резистор, ограничивающий ток обмотки реле. Полезно измерить реальные значения тока C/10 и C/30, протекающего через заряжаемую батарею, что позволит судить о правильности работы устройства.

Последовательное и параллельное соединение

Способ соединения элементов в батарею определяет необходимые характеристики трансформатора по напряжению и току. Если батарея состоит из 8 элементов типа С, соединенных параллельно, то необходимо умножить необходимый для каждого элемента ток на 8. Если емкость отдельного элемента составляет 1200 мАч, то зарядный ток C/10 будет равен 120 мА. Для 8 параллельных элементов ток составит около 1 А (8х 120 мА=960 мА=0,96 А). Необходимое напряжение составит 1,5 В. Соответственно, необходим трансформатор, выдающий напряжение 1,5 В при токе 1 А. Если эти элементы соединены последовательно, то необходимое напряжение составит 12 В при токе 120 мА.

Быстрое ЗУ

Многие современные NiCd аккумуляторные батареи можно заряжать быстрее при условии, что после их полной зарядки ЗУ переключится в режим C/30. Типичным является удвоение зарядного тока при сокращении времени зарядки в два раза. Таким образом, можно заряжать батарею током C/5 в течение 7 часов.

Хотя я не пробовал использовать данную схему ЗУ для быстрой зарядки, но не вижу оснований, почему она не должна работать. Если вы хотите это сделать, необходимо сперва подстроить потенциометр под значение тока C/10, а потом уменьшить номинал резистора R2 в два раза.

Список деталей

• U1 регулятор напряжения LM317

• L1 двухпозиционное реле с двумя группами контактов

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *