Меню Рубрики

Защита литий ионных аккумуляторов от разряда

Содержание

Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора

Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC.

Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки ("банки") на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути "мозг" контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 – ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 – это MOSFET-транзисторы.

Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.

Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection VoltageVOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release VoltageVOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от переразряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection VoltageVODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.

Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).

Тут есть весьма интересное условие . Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V (Overdischarge Release VoltageVODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за "смерть" аккумулятора. Вот лишь маленький пример.

Читайте также:  146057300 Plaset cod 63229

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер – G2NK (серия S-8261), сборка полевых транзисторов – KC3J1.

Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.

При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.

Чтобы контроллер вновь подключил аккумулятор к "внешнему миру", то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить "банку" аккумулятора, чтобы контроллер опять включил транзистор разряда – FET1?

Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P, G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда – Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время – несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, я уже рассказывал здесь.

Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов ! Вот столько может длиться "восстановительная" зарядка.

Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

JLCPCB — это крупнейшая фабрика PCB прототипов в Китае. Для более чем 600000 заказчиков по всему миру мы делаем свыше 15000 онлайн заказов на прототипы и малые партии печатных плат каждый день!

Anything in here will be replaced on browsers that support the canvas element

Плата защиты LI-ION аккумуляторов

На сегодняшний день литий ионные аккумуляторы являются самыми эффективными аккумуляторами. Они компактные, имеют большую энергоемкость, лишены эффекта памяти. При всех достоинствах у них имеется один существенный недостаток, их работу и процесс заряда нужно тщательно контролировать. Если аккумулятор разрядится ниже некоторого предела или перезарядить, он быстро теряет свои свойства, вздуться и даже взорваться. Тоже самое и в случае перегрузки и коротких замыканиях – нагрев, образование газов и в итоге взрыв.

Некоторые литий ионных аккумуляторы снабжены предохранительным клапаном, который не даст аккумулятору взорваться, но большая часть мощных полимерных аккумуляторов таких клапанов не имеют.

Другими словами, при эксплуатации литий ионных аккумуляторов требуется система их защиты.

Читайте также:  Белые рубашки женские 2018

Многие наверняка заметили маленькие платы в аккумуляторах мобильных телефонов, вот как раз эта плата и является защитой. Защищает она от глубкого разряда, от перезаряда и от коротких замыканий или перегрузок по току.

Схема этой защиты очень простая, н а плате находиться пара микросхем с мелочевкой.

За всеми процессами следит микросхема DW01. Вторая микросхема – это сборка из двух полевых транзисторов. Первый транзистор контролирует процесс разряда, второй отвечает за заряд батареи.

Во время разряда микросхема следит за падением напряжения на переходах полевых ключей, если оно доходит до критической величины (150-200мВ), микросхема закрывает транзисторы, отключая батарею от нагрузки. Работа схемы восстанавливается менее чем за секунду после того, после снятия нагрузки.

Падение напряжение на переходах транзисторов микросхема отслеживает через второй вывод.

В зависимости от емкости аккумулятора эти контроллеры могут кардинально отличаться внешним видом, током короткого замыкания и топологией схемы, но функция у них всегда одинаковая – защищать аккумулятор от перезаряда, глубокого разряда и перегрузки по току. Многие контроллеры также обеспечивают защиту от перегрева банки, контроль температуры осуществляется термодатчиком.

У меня скопилось очень много плат защиты от аккумуляторов мобильных телефонов и как раз для одного моего проекта в котором задействован литий ионный аккумулятор понадобилась система защиты. Проблема в том, что эти платы рассчитаны на максимальный ток в 1Ампер, а мне нужна была плата с током минимум 6-7 Ампер. Платы с нужным для моих целей током стоят меньше пол доллара, но ждать месяц-другой я не мог. Осмотрев китайские платы на алиэкспресс я понял, что они не многим отличаются от моих. Схематика та же, только ток защиты побольше за счёт параллельного включения силовых транзисторов.

При параллельном соединении полевых транзисторов, сопротивление их каналов будет значительно меньше, поэтому падение напряжения на них будет меньше, а ток срабатывания защиты будет больше. Параллельное соединение ключей даст возможность коммутировать большие токи, чем больше ключей , тем больше общий ток коммутации.

В схеме применены стандартные сборки из двух полевиков в одном корпусе. Их часто применяют на платах защиты аккумуляторов смартфонов и не только.

Сборки 8205А имеют очень много аналогов, как и микросхемы контроля DW01.

После сборки платы я протестировал её. Получилось именно то, что мне нужно для проекта:

  • Плата заряжает аккумулятор до напряжения 4,2В и отключает его от зарядного устройства;
  • При разряде аккумулятора ниже 2,5В аккумулятор отключился от нагрузки;
  • При токах выше 12-13 Ампер аккумулятор отключается.

Литий ионные аккумуляторы имеют малый саморазряд, но аккумулятор дополненный такой платой будет разряжаться быстрее, чем аккумулятор без защиты. Ток потребления схемы защиты мизерный, и составляет около 2,5 МИКРОампер.

  • Цена: 2,88 £ за 5 штук (или 55 рублей за штуку)
  • Перейти в магазин

Много раз на mySKU описывались модули зарядки литий-ионных аккумуляторов на базе контроллера TP4056. Применений множество — от переделки игрушек до бытовых поделок. Народный модуль TP4056 со встроенной защитой на базе DW01A прекрасен всем, только нижний порог срабатывания защиты по напряжению 2,5±0,1 В, т.е. 2,4 В в худшем случае. Для большинства современных аккумуляторов это подходит, т.к. у них порог 2,5 В. А что делать, если у вас мешок аккумуляторов с нижним порогом 2,75 В? Можно плюнуть и использовать их с таким модулем. Просто увеличивается риск того, что после разряда аккумулятор выйдет из строя. А можно использовать дополнительную плату защиты, нижний порог напряжения у которой соответствует аккумуляторам. Именно о такой плате я сегодня расскажу.

Читайте также:  Виброплита своими руками чертежи фото

Понимаю, что большинству эта тема не интересна, но пусть будет для истории, т.к. иногда вопрос поднимается.

Если вы используете аккумуляторы со встроенной защитой, то эта плата вам не нужна, вы можете спокойно использовать «народный» модуль на базе TP4056 без защиты. Если вы используете аккумуляторы без защиты с минимальным напряжением 2,5 В, то вы можете спокойно использоваться «народный» модуль на базе TP4056 с защитой.

Модулей на базе TP4056 с порогом 2,75 В я в продаже не нашёл. Начал искал отдельные модули защиты — выбор большой, есть очень дешёвые, но большинство из них сделаны на том же контроллере DW01A. Модуль из обзора — это самое дешёвое, что я смог найти. 275 рублей за 5 штук.

Модуль крошечный, 39,5 x 4,5 x 2 мм.


Контактные площадки стандартные для защиты одной ячейки: B+, B- для подключения аккумулятора и P+, P- для подключения ЗУ и нагрузки.

Официальные технические характеристики:

Модуль сделана на базе контроллера BM112. Версия BM112-LFEA. Техническим характеристикам соответствует. В роли транзистора выступает двойной N-канальный MOSFET транзистор AO8810.

Схема подключения простая:

Для активации модуля защиты достаточно подать питание на P+, P-. Конечно, TP4056 подключать не обязательно, аккумулятор с модулем защиты может спокойно жить своей жизнью (как обычный аккумулятор с защитой).

Практический тест

Это не лабораторный тест, погрешности могут быть большими, но общую картину продемонстрирует.

Я буду использовать преобразователь в качестве регулируемого БП, тестер EBD-USB и боевой аккумулятор TrustFire для проверки защиты от КЗ.

Минимальное напряжение:

Уменьшаю напряжение с помощью потенциометра. Защита срабатывает при напряжении 2,7 В. Это не заявленные 2,88 В, но, учитывая возможную погрешность, для аккумуляторов с нижним порогом напряжения 2,75 В подходит.

Максимальная рабочая сила тока:

Максимальная рабочая сила тока составляет 3,6 А. При превышении срабатывает защита. Время срабатывания зависит от нагрева транзистора. Если он горячий, то срабатывает сразу при установке 3,7 А. Если холодный, то через 30 секунд. При токе 4 А защита срабатывает практически сразу в любом случае. Т.е. заявленных 4 А нет, но 3,6 А тоже хорошо.

Температура модуля:

За 5 минут работы при максимальной силе тока транзистор нагрелся до 60 ºC, т.е. лучше не примыкать модуль вплотную к аккумулятору (без прокладки) при монтаже.

Сброс защиты происходит через некоторое время или можно подать напряжение с ЗУ для принудительного сброса.

Защита от КЗ есть… одноразовая :). Подключил свой боевой TrustFire к модулю защиты и замкнул контакты P+, P- через мультиметр. На мультиметре успел мелькнуть ток 14 А, «пшик» произошёл сразу. Сгорел транзистор на плате защиты. При этом плата защиты ток потребителю больше не пропускала, но и не работала по сути больше.

Первым делом встроил один модуль в кейс для установки аккумуляторов 18650 (USB коннектор там просто для удобства, без преобразователя). Обычно я и дети используем его для поделок с помощью мини-дрели.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *