Содержание
Область применения Ritecoat
Технология нанесения Ritecoat
Почему выбирают Ritecoat
Незащищенный против Ritecoat R625 ТМ защищенный корпус из нержавеющей стали. Обе панели были подвержены тем же условиям.
Уникальная система Ritecoat была специально разработана для восстановления, защиты и поддержания внешнего вида фасадов из алюминия, нержавеющей стали и поверхностей с порошковым покрытием. Система преобразует обычные поверхности с высокими затратами на обслуживание в поверхности с "антипригарным" слоем, который гарантирует низкие эксплуатационные расходы.
С помощью системы Ritecoat можно восстанавливать поверхности из алюминия, нержавеющей стали, с порошковым покрытием до состояния «как новое». Затем, воспользовавшись новой разработкой Ritecoat R625 TM нанести защитный слой, который обеспечит привлекательный внешний вид и снизит затраты на обслуживание. Ritecoat R625 ТМ это защитная тонкая пленка, которая создает прочный "неадгезионный" слой, что обеспечивает непревзойденную защиту для поверхности из нержавеющей стали.
Поверхность обработанная Ritecoat:
- Гораздо легче очищать и содержать в чистоте, нет необходимости в тяжелых и абразивных методах очистки
- Выдерживает окрашивания и обесцвечивания, сохраняя "как новый" внешний вид и долго не требует ухода
- Смотрится чище и ярче между периодами очистки, обеспечивая удовлетворенность клиентов
- Обладает исключительной стойкостью к окислению, граффити, химическому воздействию щелочей и растворителей
- Снижает затраты на обслуживание
Введенная в 1991 году, Ritecoat система имеет доказанный опыт защиты поверхностей от атмосферных воздействий, граффити и химических воздействий в различных условиях.
Ritecoat система имеет более чем 20 летний опыт применения. Доказано, что она работает на бесчисленных типах поверхностей в разных условиях по всему миру, в архитектурно-строительной отрасли, морском секторе, на рынке перевозок и небольших вещей, таких как кухня, лифты, перила, подоконники и др.
Ritecoat система может использоваться для ремонта старых поверхностей и для защиты новых.
Свойства и преимущества Ritecoat
Описание | Преимущество | Свойства |
Особый тип полиуретана | Отличная адгезия к различным поверхностям | Широкий спектр применения, прочный |
Прозрачный | Не изменяет основные качества обрабатываемой поверхности | Широкий спектр применения, прозрачный |
"Non-stick" (анитипригарный) | Работает так же, как "тефлон" на металле | Легче мыть и содержать в чистоте, устойчив к образованию пятен/ обесцвечиванию |
Отличная адгезия | Сильно закрепляется на многих поверхностях | Широкий спектр применения, прочный |
Специальная формула | Устойчив к атмосферным воздействиям | Прочный |
Превосходная твердость поверхности | Сопротивляется износу | Устойчива к физическим повреждениям |
Водонепроницаемость | Отталкивает воду | Сопротивляется коррозии |
Грязь | Отталкивает грязь | Лучше внешний вид, легче чистить |
Очень устойчив к воздействию кислот | Защищает от кислотной коррозии | Применение в промышленных целях и для защиты от воздействия кислотных дождей |
Высокая стойкость к щелочам | Защищает от щелочной атаки | Уменьшает или устраняет повреждения многих поверхностей от щелочей и жестких чистящих средств |
Стойкость к нагреванию | Диапазон рабочих температур до 120 ° C | Для использования в рамках программы " доступное при высоких рабочих температурах |
Огнеопасность | Соответствует классу 1 поверхность распространения огня, BS476, часть 7, 1987 | Для применения, где строгие требования к пожарной безопасности |
Низкий коэффициент трения | Гладкая поверхность | Легкая очистка, плохие условия для роста грибков и бактерий |
Паропроницаемый | Позволяют поверхности "дышать" | Позволяет избежать повреждений, вызванных уплотнением водяного пара |
Стабилен при воздействии ультрафиолетового (УФ) излучения | Поглощает почти все из ультрафиолетового диапазона солнечного спектра, т.е. длины волн между 300 и 400мм | Не разлагается от УФ |
Очень устойчив к большинству растворителей | Многие растворители могут быть использованы без ущерба Ritecoat | Очень эффективен для борьбы с граффити |
Выбор методов нанесения | Валиком или распылением | Легко наносится |
Зависимость от температуры | Должен быть использован от 1 ° C, но на практике применяется до минус 10 ° C | Может использоваться в холодных условиях |
При нормальных условиях окружающей среды, со временем внешний вид поверхностей ухудшаться. Краска будет окисляться и трескаться, металл подвергаться коррозии. Даже нержавеющая сталь в какой то спепени подвержена коррозии. Большинство наружных и внутренних поверхностей зданий, морских судов и транспортных средств нуждаются в обслуживании и быстро становится бесцветными от атмосферных загрязнений, УФ-лучей и др. Агрессивные и абразивные чистящие процедуры ведут к дальнейшей деградации поверхности. Как результат, потеря первоначального внешнего вида.
Типичные области применения:
• ПВХ / винил
• Полиэфирная пленка
• "гелькоут", оргстекло / поликарбонат
• Сырая сталь, оцинкованная и нержавеющая
• Алюминий, в том числе анодированный
• Медь и латунь
Ritecoat протестирован и прошел проверку в следующих областях:
– Общие механические, устойчивость к царапинам, влаге/погоде, сопротивление к влиянию солей, сопротивление щелочам, устойчивость к растворителям, устойчивость к другим жидким продуктам.
Несмотря на то, что высоколегированные стали называются нержавеющими, при определенных условиях они подвержены коррозии. Рассмотрим виды коррозии изделий из нержавеющей стали , а так же методы ее защиты.
Щелевая коррозия нержавеющих сталей.
Щелевая коррозия – это второй по распространенности вид повреждения нержавеющих сталей после точечной коррозии.
Щелевая коррозия возникает в тех местах, где между стальным изделием и другим предметом образуется небольшой зазор. В роли этого второго предмета обычно выступает изолирующий материал: уплотнитель или резиновая прокладка, хотя это может быть и металлический предмет. Геометрия зазора – решающий фактор начала развития щелевой коррозии. Зазор должен быть достаточно большим для проникновения химически агрессивной жидкости, но не настолько большим, чтобы материал мог вымываться из зазора течением или конвекцией жидкости.
Механизм образования щелевой коррозии хорошо известен. Первая стадия – это накопление в зазоре агрессивных ионов (таких как хлорид-ионы) и вытеснение кислорода из раствора внутри зазора. Это приводит к формированию анода в зазоре, а материал вне зазора становится катодом. Коррозия образуется в зазоре по двум причинам: во-первых, пассивная пленка разрушается из-за вытеснения кислорода, во-вторых, коррозионные реакции в анодной зоне вызывают изменение кислотности среды (со временем кислотность в зазоре возрастает).
Правильное проектирование – один из лучших способов избежать щелевой коррозии. Выбор материалов сравним с ним по важности. Щелевая коррозия наиболее интенсивна в кислотных условиях, в хлоридсодержащих нетекучих средах. Катодная защита может снизить уровень как точечной, так и щелевой коррозии, повышая щелочность анодного участка. Повышение текучести среды также уменьшит последствия обеих форм местной коррозии.
Другие пассивные материалы, такие как алюминий и его сплавы, чувствительны и к точечной, и к щелевой коррозии. Точечная и щелевая коррозия алюминия возникает аналогично коррозии нержавеющей стали.
Точечная коррозия
Точечная коррозия – это вид крайне узко локализованной коррозии, приводящей к образованию небольших отверстий в металле. Движущей силой точечной коррозии служит недостаток кислорода в небольшой области. Эта зона становится анодной, в то время как зона избытка кислорода становится катодной, вызывая узко локализованную гальваническую коррозию. Коррозия этого типа имеет свойство проникать в глубь металла. Ограниченная диффузия ионов сохраняет местный недостаток кислорода. Этот вид коррозии весьма коварен, поскольку он не причиняет значительного вреда поверхности металла, при этом глубоко повреждая его структуру. Питтинги на поверхности металла зачастую скрыты продуктами коррозии.
Развитие питтинга начинается с небольшого поверхностного дефекта: царапины, местного изменения состава или повреждения защитного покрытия. Полированные поверхности демонстрируют более высокую устойчивость к точечной коррозии, если полирование было выполнено правильно. Некачественная полировка может ускорить развитие коррозии.
Точечной коррозии обычно более всего подвержены те сплавы, коррозионная устойчивость которых обеспечивается поверхностным слоем: нержавеющие стали, никелевые сплавы, алюминиевые сплавы. Металлы же, подверженные равномерной коррозии, обычно не страдают от точечной коррозии. Например, обыкновенная углеродистая сталь в морской воде будет равномерно разрушаться под действием коррозии, в то время как на нержавеющей стали будут возникать питтинги. Добавление около 2% молибдена повышает стойкость нержавеющих сталей к точечной коррозии. Присутствие хлоридов (например, в морской воде) значительно повышает образование и рост питтингов через автокаталитический процесс. Стоячая вода также способствует точечной коррозии.
Точечная коррозия является самым распространенным видом коррозийного разрушения нержавеющей стали, приводящий к образованию отверстий в баках, резервуарах и стенках труб. Она встречается в виде небольших в диаметре, но глубоких полостей (питтингов). Их диаметр обычно не превышает 1 мм, но проникновение в глубину металла может быть велико.
В коррозионной реакции в роли анодов выступают питтинги, катодом служит остальная поверхность. Старт образованию питтинга дает повреждение защитной оксидной пленки (пассивного слоя) на поверхности стали. Обычно эти повреждения представляют собой включения в сталь посторонних примесей, таких как сера. Посторонние включения могут приводить к местной нехватке легирующих элементов, тем самым нарушая равномерность защитного оксидного слоя.
Благоприятные условия для точечной коррозии – это умеренно высокая температура, высокая концентрация хлорид-ионов и прочих галогенидов (фторидов, бромидов, йодидов). Кислотные среды также способствуют развитию питтингов, которые сами по себе кислотны.
Кислотность внутри питтинга – это та причина, по которой они, однажды образовавшись, продолжают расти вглубь.
Числовой эквивалент стойкости к точечной коррозии (PREN)
Числовой эквивалент стойкости к точечной коррозии (RREN) – это полезный справочный показатель, отражающий склонность определенных нержавеющих сталей к образованию питтингов. Его следует использовать только в качестве ориентира, а не как гарантированный способ предсказания коррозионной устойчивости в любых обстоятельствах. Было обнаружено, что сплавы, имеющие высокую концентрацию азота (N), хрома (Cr) и молибдена (Mo), демонстрируют высокую устойчивость к точечной коррозии. Сравнительная эффективность сочетания этих элементов выражается следующей формулой:
PREN = (%Cr) + (3.3 x %Mo) + (16 x %N)
(обращаем внимание, что в некоторых вариантах используется 32 x %N)
Чем выше значение показателя PREN, тем выше устойчивость к точечной коррозии.
Типичные значения показателя PREN таковы:
PREN
Пассивирование нержавеющей стали.
Для условий, где риск возникновения точечной коррозии является критичным фактором, общепринятой практикой для придания большей равномерности поверхности металла служит пассивирование.
Оно выполняется путем нанесения на поверхность окислителей, которые растворяют железо, но не оксиды легирующих элементов. Стандарт ASTM A967-1 в качестве простого и относительно безопасного способа предлагает применять 8%-ную лимонную кислоту в течение 3 часов при комнатной температуре. Пассивирование проходит быстрее при использовании 20%-ной азотной кислоты в течение 30 минут при 55°С.Для улучшения процесса пассивации к азотной кислоте также может быть добавлен 2%-ный дихромат натрия, но это значительно снижает безопасность. Для пассивации нержавеющей стали также может быть использована фтороводородная кислота, но этот процесс очень опасен. В фармацевтической индустрии для пассивации иногда используется особо чистый раствор фосфорной кислоты. В кислотах, используемых для пассивирования, должны практически отсутствовать хлорид- или фторид-ионы, иначе может возникнуть точечная коррозия стали.
Скорость процесса пассивации с использованием как азотной, так и лимонной кислоты можно повысить путем увеличения температуры. Пассивация может длиться от нескольких минут до нескольких дней в зависимости от марки обрабатываемой стали.
Стандарты ASTM – это лишь общие рекомендации. Химикаты, условия и время воздействия должны подбираться в соответствии с предполагаемыми условиями эксплуатации, включая характер коррозионной среды.
Проверка эффективности пассивирования может быть электрохимической, с использованием кривых поляризации и карты потенциалов, или химической, путем проведения анализа на сульфаты меди либо ферроцианиды. Электрохимические методы более совершенны, они выигрывают в точности и предоставляют больше информации.
Там, где положительный участок кривой вертикален или близок к вертикали, находится пассивная область, т.е. на поверхности присутствует высокопрочная тонкая пленка хрома. Диапазон напряжений, в котором пленка остается стабильной, является показателем ее качества.
Сенсибилизация нержавеющих сталей и коррозия сварных швов
Сенсибилизация нержавеющей стали – это вид межкристаллитной (межзеренной) коррозии, который приводит к выпадению кристаллов стали с поверхности металла, как показано на фото выше. Если это явление происходит в зоне сварного соединения, его часто называют коррозией сварного шва. Если сенсибилизация происходит в пределах узкой полосы, это называется ножевой коррозией: в прошлом нагретая область лезвия стального ножа вблизи рукоятки имела свойство терять кристаллы, оставляя чернеющие выемки. Нержавеющая сталь 316 может сенсибилизироваться при нагревании до температур в диапазоне 480-900°С. При более высоких температурах сенсибилизация может начаться по прошествии всего лишь 3-х минут. Если температура ниже, потребуется более часа.
Сенсибилизация вызывает коррозию, так как межзеренные границы теряют хром из-за образования интерметаллических карбидов. Шесть атомов углерода изымают из сплава 23 атома хрома. Это может привести к снижению местного содержания хрома с 18 до 12%. Когда сенсибилизированная нержавеющая сталь встречается с агрессивной средой, центр кристалла становится катодом, а межзеренная граница – очень активным местным анодом. Начальный период развития процесса может затянуться, поскольку разрушение поверхностных кристаллов занимает длительное время. Тем не менее, когда межзеренные связи ослабевают, кристаллы выпадают с поверхности и оставляют черноватые ямки.
Контактная коррозия
Пассивная поверхность нержавеющей стали постоянно преобразуется. Если сталь вступает в контакт с углеродистой или ферритной сталью, частицы могут остаться на поверхности и образовать местные аноды. Образующаяся в результате коррозия выглядит некрасиво. Контакта между этими типами металлов следует избегать. Нужно применять отдельные инструменты для разных типов материалов; рабочие зоны должны быть разделены.
Коррозия и поверхностная обработка нержавеющей стали
Существует много способов обработки поверхности изделий из нержавеющей стали. На фотографии выше показана фрезерованная поверхность. Также распространены зачищенные, отшлифованные и полированные поверхности. Обычно выбор способа поверхностной обработки нержавеющей стали основан на внешних предпочтениях архитекторов или конструкторов, но следует также принимать в расчет соображения коррозионной стойкости. В целом, чем более гладкая поверхность стали, тем устойчивей она к коррозии и появлению пятен ржавчины. Шероховатые поверхности склонны к возникновению точечной коррозии в тех условиях, где более гладкие поверхности проявили бы устойчивость. Шероховатые поверхности накапливают загрязнения и требуют большего ухода. Такие марки стали, как 304 или 316, лишь в малой степени устойчивы к образованию пятен ржавчины при использовании в морских условиях или в пищевой промышленности и определенно уязвимы, если изделия имеют шероховатую поверхность.
Уход за нержавеющей сталью.
Если нержавеющая сталь должна сохранять хороший внешний вид, не стоит полагать, что она может обходиться без ухода. В городской среде или в морских условиях для поддержания достойного облика требуется регулярное мытье теплой водой с содержанием ПАВ. Обычно интервал между чистками составляет порядка полугода, однако в суровом климате может потребоваться более регулярное мытье. Следует строго избегать очистителей, содержащих такие активные ингредиенты, как хлориды или аммиак. При обнаружении на поверхности стали пятен или ямок следует удалить пятна жесткой губкой. С момента появления питтингов потребуется более регулярный уход. С методами очистки нержавеющей стали вы можете ознакомиться в этой статье.
Коррозия нержавейки на строительных объектах
Нержавеющая сталь часто используется с наружной стороны современных зданий, поскольку она привлекательно выглядит и проста в уходе. Коррозия, подобная изображенной на фотографии выше, может иметь место в случае, если нержавеющая сталь в процессе строительства вступала в контакт с агрессивными средами или ферритной сталью. Поверхностные пятна такого рода могут легко возникнуть при несоблюдении режима ухода, если здание располагается в прибрежной(морской) или промышленной зоне. Стали 304 и 316 в таких условиях требуют регулярного ухода.
Коррозия кухонного оборудования из нержавеющей стали
Фотография демонстрирует последствия несоблюдения режима ухода на кухне заведения общественного питания. Такое оборудование, как полки или рабочие поверхности из нержавеющей стали, часто изготавливают из сталей группы прочности меньше 316, которые проще поддаются формовке(AISI 304). Промышленные холодильники и посудомоечные машины почти всегда изготовлены из более устойчивых к коррозии сталей 316 или 316L .
Кухонные поверхности из нержавеющей стали могут быстро корродировать, если оборудование поступило в некачественном состоянии.
Справа продемонстрирован крайний случай точечной коррозии: хлоросодержащий очиститель вызвал коррозию раковины. Более мягкие формы этого вида коррозии возникают, когда в контакт с нержавеющей сталью вступает неверно выбранный очиститель или отбеливатель.
Коррозия изделий из нержавеющей стали в фармацевтической промышленности
Многие фармацевтические фабрики работают с соляными растворами и используют нержавеющую сталь 316L. Обычно нержавеющая сталь хорошо справляется с такими условиями, но если соединения кромок остаются в контакте с соляным раствором, может возникнуть щелевая коррозия, как показано на фотографии.
При стерилизации паром поверхность нержавеющей стали может покрываться рыжеватыми пятнами. Применяемая в фармацевтической промышленности нержавеющая сталь, также может подвергаться точечной коррозии, если технологическая жидкая среда недостаточно текучая. Нетекучие растворы также могут вызывать коррозию шаровых и поворотных клапанов из нержавеющей стали. Дезинфицирующие пары, такие как пары надуксусной кислоты, также могут приводить к поражению нержавеющих сталей. Там, где используются регулируемые насосы, нержавеющая сталь может подвергаться коррозии под воздействием блуждающих токов.
Коррозия нержавеющих сталей в пищевой промышленности
На этой фотографии видна коррозия стального распылителя из молочного цеха, начавшаяся на внутренней стороне и вышедшая наружу. Молочные и прочие продукты часто содержат соль. Если они долго находятся в контакте с нержавеющей сталью, может возникнуть коррозия.
Конвейеры в пищевой промышленности, подобные изображенному на фотографии, могут быстро корродировать, если состояние поверхности неудовлетворительно. Поверхность этого конвейера подвергалась дробеструйной обработке. Зачищенные поверхности на том же предприятии оставались в хорошем состоянии. В мясной промышленности крайне важна стерильность, поэтому зачастую необходимо использовать хлоридсодержащие очистители. После обработки их нужно тщательно удалять с поверхности.
Коррозия нержавеющей стали в бассейнах
Поручни из нержавеющей стали часто встречаются в бассейнах и в целом устойчивы к коррозии, которую могут вызвать применяемые в бассейнах химикаты. Коррозия, показанная на фотографии выше, возникла из-за неверного выбора средства для мытья полов. Изделия из нержавеющей стали, специально предназначенные для использования в бассейнах, требуют регулярной чистки и мытья.
Условия, в которых появляется ржавчина
Особенных условий, при которых появляются вкрапления ржавчины на поверхности нержавеющего металла, не нужно. Достаточно незначительного снижения концентрации хрома в сплаве, чтобы поверхность стала восприимчива к разрушающим внешним воздействиям. Еще одним условием, при котором внешний слой начинает портиться ‒ контакт железа с нержавеющей поверхностью.
Условием, при котором возникает нарушение защищенного хромом слоя металла, является неправильная технология сварки. На поверхность нержавейки попадают частички железа. Если потом плохо зачистить поверхность, то мельчайшие частицы приводят к проявлению вкраплений коррозии на нержавейке. Плохо зачищенный сварной шов, точнее площадь вокруг места сварки покрыта не только остатками железа, но и шлаком, брызгами от сварки, флюсом. Вкрапления не всегда будут развиваться в полноценную коррозию со сквозными дырами. Даже самый идеальный шов будет выглядеть неопрятно, если не зачистить поверхность вокруг, не убрать дефекты. В каталоге на нашем сайте вы можете купить нержавеющую бесшовную трубу 12х18н10т – способ избежать рисков, которые возникают при сварке.
Разновидности коррозии
Эффективные добавки, наделяющие высоколегированные сплавы антикоррозийными свойствами, не всегда решают проблемы с появлением дефектов. Классифицируют шесть основных видов ржавчины, поражающих нержавейку. О них стоит поговорить подробнее:
1. Щелевая коррозия. При проектировании изделий и массивных металлоконструкций возникают зазоры, или места крепления недостаточно хорошо уплотнены. Постепенно вода или кислотные реагенты деактивируют оксидный слой. Если вовремя не создать условия, в которых реакция прекратится, проржавеет не только место крепления, но и крепежные элементы.
2. Точечная коррозия. Возникает при нарушениях технологии работы с нержавейкой. Агрессивная внешняя среда, небольшие частички металла растворяют защитный оксидный слой, проникая вглубь сплава, образуя питтинги.
3. Гальваническая коррозия. Условием для ее проявления служит токопроводящая среда. Нержавеющая сталь контактирует с агрессивными реагентами и в полной мере проявляются разрушающие свойства на защитный слой хрома.
4. Межкристаллитная коррозия. Существуют условия, при которых во время сварки нержавейки кристаллы стали выпадают. Образуются точечные зазоры, в которых впоследствии и развивается ржавчина.
5. Общая коррозия. Возникает, когда на поверхность попадают йод, хлор, фтор, разрушающие молекулярную структуру хромсодержащего защитного слоя.
6. Эрозивная коррозия. Возникает при условиях постоянного механического воздействия на поверхность нержавеющей стали.
Как бороться с коррозией нержавеющей стали?
a) На металлургических заводах, где хранятся заготовки, должны соблюдаться условия хранения и предотвращаться ситуации, когда частицы нелегированного металла попадают на нержавейку.
b) Необходимо исключить близкий контакт даже с мельчайшими частичками обычного металла. Это же правило касается и инструментов. Металлические щетки, которые используют для чистки поверхности нелегированной стали, нельзя использовать для нержавеющих сплавов.
c) Не рекомендуется использовать сложные конструкции из нержавейки в соляной и серной кислоте.
d) Особые легирующие компоненты: тантал, титан, ниобий помогут усилить антикоррозийные свойства.
e) Предотвращать контакт нержавейки с хлоридами.
“>