Меню Рубрики

Алюминий воздушный аккумулятор своими руками

Содержание

Почти тридцатилетний поиск путей совершенствования алюминий-ионного аккумулятора приближается к своему финалу. Первый аккумулятор с алюминиевым анодом, способный быстро заряжается, при этом недорогой и долговечный, разработали ученые из Стэнфордского университета.

Исследователи уверенно заявляют, что их детище вполне может стать безопасной альтернативой литий-ионным аккумуляторам, всюду применяющимся сегодня, а также щелочным батарейкам, которые экологически вредны.

Не лишним будет вспомнить, что литий-ионные аккумуляторы порой возгораются. Профессор химии Хонгжи Дай уверен, что его новая батарея не загорится, даже если просверлить её насквозь. Коллеги профессора Дайя охарактеризовали новые аккумуляторы как «сверхбыстро перезаряжаемые алюминий-ионные аккумуляторы».

В силу низкой стоимости, пожаробезопасности, и способности создавать значительную электроемкость, алюминий уже давно привлек внимание исследователей, однако многие годы ушли на создание коммерчески жизнеспособной алюминий-ионной батареи, которая могла бы производить достаточное напряжение даже после многих циклов заряда-разряда.

Ученым нужно было преодолеть многие препятствия, в числе которых: распад материала катода, низкое напряжение разряда ячейки (около 0,55 вольт), потеря емкости и недостаточный жизненный цикл (менее 100 циклов), быстрая потеря мощности (от 26 до 85 процентов спустя 100 циклов).

Теперь же ученые представили аккумуляторную батарею на основе алюминия с высокой стабильностью, в который они использовали металлический анод из алюминия в паре с катодом из трехмерной графитовой пены. До этого было перепробовано много разных материалов для катода, и решение в пользу графита было найдено совершенно случайно. Ученые из группы Хонгжи Дайя определили несколько типов графитового материала, которые показывают весьма высокую производительность.

В своих экспериментальных образцах, команда Стэнфордского университета поместила алюминиевый анод, графитовый катод, и безопасный жидкий ионный электролит, состоящий в основном из растворов солей, в гибкий полимерный пакет.

Профессор Дай и его группа записали видео, где показали, что даже если просверлить оболочку, их аккумуляторы все равно будут продолжать работать некоторое время и не загорятся.

Важным достоинством новых аккумуляторов является их ультрабыстрая зарядка. Обычно литий-ионные аккумуляторы смартфонов подзаряжаются в течение нескольких часов, в то время, как прототип новой технологии демонстрирует беспрецедентную скорость зарядки до одной минуты.

Долговечность новых батарей особенно поражает. Ресурс батареи составляет более 7500 циклов заряда-разряда, причем без потери мощности. Авторы сообщают, что это первая модель алюминий-ионных батарей, с ультрабыстрой зарядкой, и стабильностью в тысячи циклов. А типичный литий-ионный аккумулятор выдерживает лишь 1000 циклов.

Примечательной особенностью алюминиевой батареи является ее гибкость. Аккумулятор можно сгибать, что говорит о потенциальной возможности его применения в гибких гаджетах. Кроме всего прочего, алюминий значительно дешевле лития.

Перспективным видится использование таких батарей для хранения возобновляемой энергии с целью ее резервирования для последующего обеспечения электрических сетей, поскольку по последним данным ученых, алюминиевую батарею можно заряжать десятки тысяч раз.

Вопреки массово используемым элементам АА и ААА напряжением 1,5 вольт, алюминий-ионный аккумулятор генерирует напряжение порядка 2 вольт. Это наивысший из показателей, которых кто-либо добился с алюминием, причем в перспективе этот показатель будет улучшен, заявляют разработчики новых аккумуляторов.

Читайте также:  Водоотталкивающая простынь на резинке

Достигнута плотность хранения энергии 40 Вт-час на килограмм, а у литий-ионных батарей этот показатель достигает 206 Вт-час на килограмм. Однако улучшение катодного материала, уверен профессор Хонгжи Дай, в конце концов приведет как к увеличению напряжения, так и к повышению плотности хранения энергии в аккумуляторах алюминий-ионной технологии. В любом случае, ряд преимуществ перед литий-ионной технологией уже достигнут. Здесь и дешевизна, сочетающаяся с безопасностью, и высокоскоростная зарядка, и гибкость, и длительный срок службы.

Электротехнический журнал. Статьи. Новости. Авторские публикации. Документы.

Воздушно-алюминиевые батареи вырабатывают электричество посредством реакции кислорода в воздухе с алюминием. У них – одно из самых высоких значений плотности энергии среди батарей всех типов, но они все еще не получили широкого распространения из-за сложностей с высокой стоимостью анода и удаления побочных продуктов при использовании традиционных электролитов. Это ограничивает их использование, в основном, до военных отраслей. Однако, у электромобиля с алюминиевыми батареями есть потенциал, восьмикратно превышающий возможности ионно-литиевые аналоги, при этом у них – гораздо меньший вес.

Воздушно-алюминиевые батареи относятся к первичным (неперезаряжаемым) элементам. Как только алюминиевый анод истрачивается в ходе реакции с атмосферным кислородом и катодом в водном электролите для формирования гидратного оксида алюминия, батарея больше не может вырабатывать электричество. Однако, есть возможность механической перезарядки батареи с помощью новых алюминиевых анодов, сделанных из переработанного гидратного оксида алюминия. Подобная переработка может стать важной, если воздушно-алюминиевые батареи будут широко применяться.

Электромобили с питанием от алюминиевых батарей последние несколько десятилетий находятся на стадии обсуждения. Гибридизация уменьшит расходы, а в 1989 году было сообщено о проведении дорожных испытаний электромобилей с гибридной воздушно-алюминиевой/свинцово-кислой батареей. В 1990 году в Онтарио была проведена демонстрация гибридного электромобиля класса «минивэн» с питанием от алюминиевой батареи.

В марте 2013 года израильская компания «Phinergy» опубликовала видео демонстрации электромобиля с использованием воздушно-алюминиевых элементов, проехавшего 330 км при помощи специального катода и гидроксида калия. 27 мая 2013 года 10 канал Израиля в выпуске вечерних новостей показал автомобиль с батареей от «Phinergy» в багажнике. Было заявлено, что он может проехать более 2 000 километров (1 200 миль), прежде чем потребуется замена алюминиевых анодов.

Электрохимия

Полуреакция окисления анода выглядит так: Al + 3OH – Al(OH)3 + 3e – + 2.31 В.

Полуреакция восстановления катода выглядит так: O2 + 2H2O + 4e

Общая схема реакции выглядит так: 4Al + 3O2 + 6H2O 4Al(OH)3 + 2.71 В.

За счет этих реакций становится возможной выработка 1,2 В напряжения, что на практике достижимо за счет использования в качестве электролита гидроксида калия. Соленая вода в качестве электролита помогает достичь напряжение в 0,7 В на элемент.

Коммерциализация

Проблемы

Алюминий в качестве «топлива» для автомобилей был изучен Шаохуа Иеном и Гарольдом Найклом. Они пришли к следующим выводам:

«Система воздушно-алюминиевых батарей может вырабатывать достаточно энергии и мощности для дальности пробега и ускорения, аналогичного машинам с ДВС… стоимость алюминия в качестве анода может составлять ниже 1,1 доллара за килограмм, пока продукт реакции подлежит переработке. Общий КПД в ходе циклического процесса в электромобилях с воздушно-алюминиевыми батареями может составить 15 % (нынешний этап) или 20 % (проект), сравнимый с КПД автомобилей с ДВС (13 %). Плотность энергии концепта батареи составляет 1 300 Вт*ч/кг (нынешнее время) или 2 000 Вт*ч/кг (проектный образец). Был проведен анализ цикла долговечности электромобилей с воздушно-алюминиевыми батареями по сравнению с аналогами со свинцово-кислыми и никелевыми гибридными (никелево-марганцовых) батареями. Только электромобили с воздушно-алюминиевыми батареями могут получить диапазон перемещений, сравнимый с аналогами с ДВС. Согласно результатам анализа, данный тип электромобилей является наиболее перспективной по сравнению с автомобилями с ДВС в плане диапазона перемещений, цены покупки, расходов на топливо и срок службы».

Читайте также:  Вязание шапочки спицами с мастер класс видео

Остается решить ряд технических проблем для того, чтобы сделать воздушно-алюминиевые батареи более пригодными для электромобилей. Аноды из чистого алюминия подвержены коррозии со стороны электролита, поэтому алюминий обычно сплавляют с оловом или другими элементами. Гидратная окись алюминия, появляющаяся в результате реакции элемента, формирует гелеобразную субстанцию на аноде и уменьшает выработку электричества. К этой проблеме обращаются на стадии разработки воздушно-алюминиевых элементов. К примеру, были разработаны добавки, формирующий оксид алюминия в виде порошка, а не геля.

Современные воздушные катоды состоят из реактивного слоя углерода с токосъемника с никелевой решеткой, катализатора (к примеру, кобальта) и пористой гидрофобной тефлоновой пленки, предотвращающей утечку электролита. Кислород в воздухе проходит через тефлон, затем – реагирует с водой для создания ионов гидроокиси. Эти катоды работают хорошо, но могут стоить очень дорого.

Стандартные воздушно-алюминиевые батареи имеют ограниченный срок хранения, так как алюминий реагирует с электролитом и производит водород, когда батарея протаивает, хотя этого уже нет в современных образцах. Данной проблемы можно избежать за счет хранения электролита в цистерне вне батареи и перемещения его в батарею при необходимости использования.

Данные батареи, к примеру, можно использовать в качестве резервных батарей в АТС или источников резервного питания. Воздушно-алюминиевые батареи можно использовать для питания ноутбуков и сотовых телефонов, уже сейчас разрабатываются модели для подобного вида работы.

Батареи с алюминием в основе

Были исследованы следующие типы алюминиевых батарей:

1. Хлорно-алюминиевая батарея была запатентована ВВС США в 1970-х годах и разработана, в основном, для использования в военных целях. Они используют алюминиевые аноды и хлор на катодах из графитовой подложки. Для работы им требуются повышенные температуры.
2. Алюминиево-серная батарея крайне заинтересовала американских исследователей, хотя очевидно то, что они все еще далеки от массового производства. В 2016 году в Мэрилендском университете была впервые проведена демонстрация перезаряжаемой алюминиево-серной батареи.
3. Алюминиево-железно-оксидные, алюминиево-медно-оксидные, алюминиево-железно-гидроксидная батареи были предложены некоторыми исследователями для военных ГТС. Их плотность энергии составляет 455, 440 и 380 Вт*ч/кг соответственно.
4. Батарея с алюминием и двуокись марганца использует кислотный электролит. Вырабатываемое напряжение составляет 1,9 В. Другая вариация использует основание (гидроксид калия) в качестве анолита и серную кислоту – в качестве католита. Две части отделены тонкой непроницаемой пленкой во избежание смешения электролита в каждом из элементов в половинах батареи. Эта конфигурация дает напряжение в 2,6-2,85 В.
5. Алюминиево-стеклянная система. Как было сообщено в итальянском патенте от Байокки, в области взаимодействия между силикатным стеклом и алюминиевой фольгой (нет потребности в других компонентах) при температуре, близкой к точке плавления металла, вырабатывается электрическое напряжение вместе с проходящим током, когда система замкнута на активной нагрузке. Феномен впервые был замечен Байокки, а затем – А. Дэлль’Эра и другие коллеги начали исследование и составление характеристики данной электромеханической системы.

Читайте также:  Входная дверь с подогревом

Одним из авторов под псевдонимом «Oborotez» был предложен вариант, как можно сделать простейшую и мощную батарею, которая может работать на соляном растворе. От такой батареи можно зарядить мобильный, включить радио, осветительные приборы и многое другое. Знание принципа работы такой батареи точно никогда не помешает тем, кто занимается туризмом.

Материалы и инструменты для создания батареи:
– металлы для создания гальванической пары (магний и медь);
– поваренная соль;
– вода;
– корпус от старого аккумулятора;
– сода;
– тиски;
– ножовка;
– мультиметр;
– светодиоды и другие потребители для проверки батареи.

Шаг первый. Подготовка корпуса
В качестве корпуса для новой батареи автор использовал пластиковый корпус аккумулятора от скутера. Старые аккумуляторы можно забесплатно взять в тех местах, где занимаются ремонтом скутеров. В первую очередь с аккумулятора нужно аккуратно слить кислоту. При этом нужно быть крайне осторожным, так как при попадании на кожу кислота вызывает ожог. Чтобы нейтрализовать кислоту используют соду. Также в конце процедуры лучше всего помыть руки водой с растворенной содой.




Что касается магния, то здесь все немного сложнее. Сталь, с высоким содержанием магния можно найти в старых немецких авто, также много магния содержится в корпусе двигателя автомобиля «Запорожец». Если таковых элементов не имеется, то отлично подойдут элементы от Водогреек. Их еще называют Магниевые аноды.

От анодов нужно отрезать лишние штыри, а сами аноды разрезать на де части, в итоге из трех анодов получится шесть небольших.

Шаг третий. Сборка батареи
Теперь нужно взять медную проволоку и смять ее так, как на картинке. Чем больше будет проволоки, тем больше будет площадь контакта, и как следствие выше сила тока. Далее медная проволока подключается последовательно с магниевыми анодами и укладывается в отсеки корпуса аккумулятора. При этом медь будет образовывать положительный потенциал, а магний отрицательный. На заключительном этапе емкость заливается соленой водой. Если вода будет теплой, это хорошо, так как сила тока при этом также возрастет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *