Рассмотрим процессы, протекающие в электрической цепи переменного тока с конденсатором. Если подключить конденсатор к источнику постоянного тока, то в цепи возникнет кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Если заряженный конденсатор отключить от источника постоянного тока и соединить его обкладки с выводами лампы накаливания, то конденсатор будет разряжаться, при этом наблюдается кратковременная вспышка лампы.
При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор вновь заряжается, но полярность напряжения на его обкладках изменяется на противоположную и т.д. Процессы зарядки и разрядки конденсатора чередуются с периодом, равным периоду колебаний приложенного переменного напряжения.
Как и в цепи постоянного тока, через диэлектрик, разделяющий обкладки конденсатора, электрические заряды не проходят. Но в результате периодически повторяющихся процессов зарядки и разрядки конденсатора по проводам, соединенным с его выводами, течет переменный ток. Лампа накаливания, включенная последовательно с конденсатором в цепь переменного тока (рис. 6), кажется горящей непрерывно, так как человеческий глаз при высокой частоте колебаний силы тока не замечает периодического ослабления свечения нити лампы.
Установим связь между амплитудой колебаний напряжения на обкладках конденсатора и амплитудой колебаний силы тока. При изменениях напряжения на обкладках конденсатора по гармоническому закону
заряд на его обкладках изменяется по закону:
Электрический ток в цепи возникает в результате изменения заряда конденсатора: i = q’. Поэтому колебания силы тока в цепи происходят по закону:
Следовательно, колебания напряжения на обкладках конденсатора в цепи переменного тока отстают по фазе от колебаний силы тока на р/2 или колебания силы тока опережают по фазе колебания напряжения на р/2 (рис. 7). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того как напряжение достигает максимума, сила тока становится равной нулю и т.д.
Произведение Um⋅щ⋅C является амплитудой колебаний силы тока:
Отношение амплитуды колебаний напряжения на конденсаторе к амплитуде колебаний силы тока называют емкостным сопротивлением конденсатора (обозначается ХC):
Связь между амплитудным значением силы тока и амплитудным значением напряжения по форме совпадает с выражением закона Ома для участка цепи постоянного тока, в котором вместо электрического сопротивления фигурирует емкостное сопротивление конденсатора:
Емкостное сопротивление конденсатора, как и индуктивное сопротивление катушки, не является постоянной величиной. Оно обратно пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в цепи конденсатора при постоянной амплитуде колебаний напряжения на конденсаторе возрастает прямо пропорционально частоте.
Дата добавления: 2015-03-09 ; просмотров: 1269 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Основным устройством, определяющим рабочую частоту любого генератора переменного тока, является колебательный контур. Колебательный контур (рис.1) состоит из катушки индуктивности L (рассмотрим идеальный случай, когда катушка не обладает омическим сопротивлением) и конденсатора C и называется замкнутым. Характеристикой катушки является индуктивность, она обозначается L и измеряется в Генри (Гн), конденсатор характеризуют емкостью C, которую измеряют в фарадах (Ф).
Пусть в начальный момент времени конденсатор заряжен так (рис.1), что на одной из его обкладок имеется заряд +Q0, а на другой – заряд –Q0. При этом между пластинами конденсатора образуется электрическое поле, обладающее энергией
, (1)
где – амплитудное (максимальное) напряжение или разность потенциалов на обкладках конденсатора.
После замыкания контура конденсатор начинает разряжаться и по цепи пойдет электрический ток (рис.2), величина которого увеличивается от нуля до максимального значения . Так как в цепи протекает переменный по величине ток, то в катушке индуцируется ЭДС самоиндукции, которая препятствует разрядке конденсатора. Поэтому процесс разрядки конденсатора происходит не мгновенно, а постепенно. В каждый момент времени разность потенциалов на обкладках конденсатора
(2)
(где – заряд конденсатора в данный момент времени) равна разности потенциалов на катушке, т.е. равна ЭДС самоиндукции
. (3)
Рис.1 | Рис.2 |
Когда конденсатор полностью разрядится и , сила тока в катушке достигнет максимального значения (рис.3). Индукция магнитного поля катушки в этот момент также максимальна, а энергия магнитного поля будет равна
. (4)
Затем сила тока начинает уменьшаться, а заряд будет накапливаться на пластинах конденсатора (рис.4). Когда сила тока уменьшится до нуля, заряд конденсатора достигнет максимального значения Q0, но обкладка, прежде заряженная положительно, теперь будет заряжена отрицательно (рис. 5). Затем конденсатор вновь начинает разряжаться, причем ток в цепи потечет в противоположном направлении.
Так процесс перетекания заряда с одной обкладки конденсатора на другую через катушку индуктивности повторяется снова и снова. Говорят, что в контуре происходят электромагнитные колебания. Этот процесс связан не только с колебаниями величины заряда и напряжения на конденсаторе, силы тока в катушке, но и перекачкой энергии из электрического поля в магнитное и обратно.
Перезарядка конденсатора до максимального напряжения произойдет только в том случае, когда в колебательном контуре нет потерь энергии. Такой контур называется идеальным.
В реальных контурах имеют место следующие потери энергии:
1) тепловые потери, т.к. R ¹ 0;
2) потери в диэлектрике конденсатора;
3) гистерезисные потери в сердечнике катушке;
4) потери на излучение и др. Если пренебречь этими потерями энергии, то можно написать, что , т.е.
. (5)
Колебания, происходящие в идеальном колебательном контуре, в котором выполняется это условие, называются свободными, или собственными, колебаниями контура.
В этом случае напряжение U (и заряд Q) на конденсаторе изменяется по гармоническому закону:
, (6)
где n – собственная частота колебательного контура, w0 = 2pn – собственная (круговая) частота колебательного контура. Частота электромагнитных колебаний в контуре определяется как
или . (7)
Период T – время, в течение которого совершается одно полное колебание напряжения на конденсаторе и тока в контуре, определяется формулой Томсона
. (8)
Сила тока в контуре также изменяется по гармоническому закону, но отстает от напряжения по фазе на . Поэтому зависимость силы тока в цепи от времени будет иметь вид
. (9)
На рис.6 представлены графики изменения напряжения U на конденсаторе и тока I в катушке для идеального колебательного контура.
В реальном контуре энергия с каждым колебанием будет убывать. Амплитуды напряжения на конденсаторе и тока в контуре будут убывать, такие колебания называются затухающими. В задающих генераторах их применять нельзя, т.к. прибор будет работать в лучшем случае в импульсном режиме.
Рис.5 | Рис.6 |
Для получения незатухающих колебаний необходимо компенсировать потери энергии при самых разнообразных рабочих частотах приборов, в том числе и применяемых в медицине.
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9836 – | 7696 – или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Читайте также:
- Апериодический процесс, 2 – колебательный, 3 – на границе апериодичности
- Асимптотическая формула Пуассона и условия ее применимости
- Барометрическая формула
- Барометрическая формула и атмосфера Земли.
- Будова ротової порожнини. Зубна формула різних тварин.
- В выходном встречно- штыревом преобразователе (ВШП), к которому подключена нагрузка, возникает электрический сигнал.
- Вектор кутової швидкості. Формула Ейлера
- Величины характеризующие электрический ток
- Вычисление определенных интегралов. Формула Ньютона – Лейбница
- Двойной электрический слой
- Двойной электрический слой и электрокинетические явления
- Двойной электрический слой. Электродный потенциал
Электромагнитные колебания.
КОЛЕБАНИЯ И ВОЛНЫ
Лекция 16
Электромагнитные колебания могут возникать в цепи, содержащей индуктивность L и емкость C (рис.16.1). Такая цепь называется колебательным контуром. Возбудить колебания в таком контуре можно, например, предварительно зарядив конденсатор от внешнего источника напряжения, соединить его затем с катушкой индуктивности.
Рис.16.1. Электрический колебательный контур.
Поскольку внешнее напряжение к контуру не приложено, сумма падений напряжений на емкости и индуктивности должна быть равна нулю в любой момент времени:
откуда, учитывая, что сила тока , получаем дифференциальное уравнение свободных незатухающих колебаний электрического заряда в колебательном контуре
.
Если ввести обозначение
,
то полученное уравнение принимает вид:
.
Решением этого уравнения, как известно, является функция
.
Таким образом, заряд на обкладках конденсатора изменяется по гармоническому закону с частотой ω0, называемой собственной частотой колебательного контура. Период колебаний определяется по формуле Томсона (Thomson W., 1824-1907):
Напряжение на конденсаторе:
,
где – амплитуда напряжения.
Сила тока в контуре:
.
Сопоставляя полученные выражения, видим, что когда напряжение на конденсаторе, а значит энергия электрического поля, обращается в нуль, сила тока, а, следовательно, энергия магнитного поля, достигает максимального значения (рис.16.2). Таким образом, электрические колебания в контуре сопровождаются взаимными превращениями энергий электрического и магнитного полей.
Рис.16.2. Графики изменения UC(t) и I(t) в LC-контуре.
Амплитуды тока Im и напряжения Um связаны между собой очевидным соотношением:
.
Дата добавления: 2014-01-07 ; Просмотров: 2961 ; Нарушение авторских прав? ;
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет