Содержание
Сложные системы автоматики, выполняющие роль переключения режимов работы тех или иных устройств, построены на простейших элементах. Они имеют свойство изменять какой-либо из своих параметров (форму, объем, электропроводность и др.) под воздействием одного или нескольких факторов.
Так, все современные нагревательные элементы снабжены терморегуляторами, контролирующими степень нагрева поверхности. Основой любого термостата является биметаллическая пластина.
Что такое пластина биметаллическая
Элемент, обладающий свойством деформироваться (изгибаться) в одном направлении под воздействием повышенной температуры, получил название биметаллическая пластина. По названию можно догадаться, что в составе пластины имеются два металла. Каждый из них имеет свою величину коэффициента температурного расширения. В результате при нагреве такой пластины один компонент ее расширяется на определенную величину, а второй на другую.
Это приводит к изгибу, форма которого зависит от разности температурных коэффициентов. Скорость деформации прямо пропорциональна изменению температуры. При охлаждении пластины она приобретает исходное положение. Пластина является монолитным соединением и может работать сколь угодно долго.
Какие компоненты применяют в биметаллах
Для того чтобы соединить металлы между собой в единый биметалл, применяют способы пайки, сварки и заклепки.
Примером распространенной биметаллической пластины служит соединение латуни и стали. Такой композит имеет высокую термочувствительность.
Существуют аналоги биметалла из неметаллических материалов (стекло, керамика). Они призваны работать в агрессивных химических средах, где не может быть использован металл.
Как работает биметаллическая пластина
Пластина из биметалла работает в составе различных систем терморегулирования и термоконтроля, а точнее в термореле многих модификаций. В простейшее термореле входит:
- Термостойкий корпус. В нем размещены все элементы реле.
- Клеммы – служат для подключения электрической цепи.
- Механические переключатели контактов или контактных групп. Замыкают и размыкают электрические контакты, включая или отключая цепь.
- Диэлектрический шток либо прокладка. Передает механическое воздействие от пластины к переключателю.
- Биметаллическая пластина. Является элементом реагирования на изменение температуры и создает давление на шток.
- Датчик температуры. Обыкновенная металлическая пластина, непосредственно соединенная с элементом контроля. Она обладает хорошей теплопроводностью и передает тепло на биметалл.
Когда поверхность нагревателя имеет допустимую температуру, биметаллическая пластина находится в определенном изогнутом (ровном) состоянии, электрические контакты при этом замкнуты, в цепи нагревателя течет ток.
При повышении температуры поверхности биметалл начинает греться и постепенно деформируется, оказывая давление на шток. При этом наступает момент, когда шток размыкает контакт механического переключателя, и прерывается ток в цепи нагревателя. Далее он остывает, охлаждается пластина, цепь замыкается, и все повторяется снова.
Часто реле выпускают с возможностью регулирования срабатывания по величине температуры.
Биметаллическая пластина котла
Системы отопления на природном газе являются устройствами повышенной опасности, поэтому включают в себя различные датчики контроля состояния. Так, основной элемент безопасности – это датчик тяги. Он определяет правильное направление выхода продуктов сгорания, то есть от камеры сгорания в сторону дымохода. Это предотвращает попадание угарного газа в помещение и отравление людей.
Основным компонентом датчика тяги является биметаллическая пластина для газового котла. Принцип работы ее аналогичен любому биметаллу, а размеры и параметры материала рассчитаны таким образом, что превышение температуры 75 градусов в канале приводит к деформации пластины и срабатыванию газового клапана.
В каких устройствах используют биметалл
Область применения биметаллической пластины необычайно широка. Практически все устройства, где необходим контроль за температурой, оснащены термостатами на основе биметалла. Это объясняется конструктивной простотой и надежностью таких релейных систем. В привычной нам технике термостаты стоят:
- В бытовых нагревательных приборах: печи, гладильные системы, бойлеры, электрочайники, и др.
- Системы отопления: электрические конвекторы, газовые и твердотопливные котлы с электроникой.
- В электропакетниках автоматического выключения.
- В электронике в измерительных приборах, а также в генераторах импульсов и временных реле.
- В двигателях теплового типа.
В промышленной технике биметаллические пластины устанавливают в тепловых реле, призванных защищать мощные электрические приборы от температурных перегрузок: трансформаторы, электродвигатели, насосы и т.д.
Когда меняют пластину
Все биметаллические пластины имеют длительный срок службы, но иногда ее замена неизбежна. Необходимость наступает тогда, когда:
- Биметалл потерял свои свойства или произошло их изменение, что не соответствует режиму работы устройства.
- Пластина выгорела (относится к тепловым реле).
- При нарушении фиксирующего болта либо выходе из строя горелки запальника (в газовых котлах).
- Когда замена пластины предполагается плановыми мероприятиями технического обслуживания.
В бытовой технике ее обычно не меняют. Если выходит из строя система терморегуляции, то замена биметаллической пластины происходит целым блоком, которые идут как запчасти к конкретной модели устройства. Но часто причиной выхода из строя термостата служит подгорание размыкающих контактов, а не биметаллическая пластина.
Биметалли́ческая пласти́на — пластина, изготовленная из биметалла или из механически соединённых кусков двух различных металлов. Как правило, используется как основная часть термомеханического датчика.
Содержание
Устройство [ править | править код ]
Биметаллическая пластина представляет собой отрезок ленты, изготовленной из биметалла. Один конец ленты, как правило, неподвижно закреплён в устройстве, а другой — перемещается в зависимости от температуры пластины.
Встречаются устройства, состоящие из двух пластин разнородных металлов, закреплённых одними концами и соединённых (клёпкой, пайкой или сваркой) у других концов. При изменении температуры соединённый конец пластин перемещается.
Работоспособны в очень широком диапазоне температур [1] .
Применение [ править | править код ]
Термостаты и защитные устройства [ править | править код ]
Изгибающаяся биметаллическая пластина управляет электрическими контактами, замыкающими или размыкающими цепь подогревателя. (В случае защитных устройств — отключающие электропитание нагрузки).
Могут сводить-разводить контакты постепенно (дешёвая ненадёжная конструкция — контакты искрят и обгорают), а могут срабатывать скачком (механическая бифуркация), сразу перемещая контакт на несколько миллиметров (щелчки от таких переключений слышны при работе утюгов, чайников и других подобных устройств).
Применяются как защитные устройства: для защиты от перегрева (например в электрочайнике) или от превышения силы тока (предохранители). могут быть как самовосстанавливающимися, так и требующими вмешательства персонала (предполагается, что персонал найдёт и устранит причину неполадки, и только потом вернёт предохранитель во включённое состояние).
Генераторы импульсов и реле времени [ править | править код ]
Биметаллическая пластина с контактом и с подогревателем (применяется обмотка из высокоомного провода либо сама пластина, по которой пропускают ток).
Применяется для переключения режимов работы устройств после их включения (например, в стартёрах люминесцентных ламп и электромоторов). В этом случае нагрев пластины продолжается всё время, пока устройство включено.
Измерительные приборы [ править | править код ]
Разновидность биметаллического термометра с подогревателем. В зависимости от способа включения может быть вольтметром или амперметром. При работе потребляет много энергии, однако совершенно не содержит трущихся механических частей. Просты, вибростойки, мало чувствительны к загрязнениям, как правило, самовосстанавливаются при отсыревании. До сих пор широко применяются в автомобильной электронике.
Часы [ править | править код ]
Применяются для термокомпенсации хода часов. Могут изменять диаметр разрезного обода баланса, сделанного из биметаллической пластины, либо изменять действующую длину пружины баланса.
Термометры [ править | править код ]
Длинная свёрнутая спиралью лента из биметалла закрепляется в центре. Другой (внешний) конец спирали перемещается вдоль шкалы, размеченной в градусах. Такой термометр, в отличие от жидкостного (например, ртутного) совершенно нечувствителен к изменениям внешнего давления и механически более прочен.
В термографах биметаллическая пластина через систему рычагов управляет пером самописца, рисующим график изменения температуры (применяется в метеорологии).Например, в регуляторе температуры биметаллическая пластина, нагреваясь до предельно допустимой температуры, определеленным образом изгибается и размыкает цепь . В результате этого дальнейшее нагревание не происходит.
Тепловые двигатели [ править | править код ]
Преобразование разности температур в механическую работу. Существуют простые игрушки для демонстрации возможности работы таких двигателей [2] .
Устройства для микроперемещений [ править | править код ]
Предметы (типа «препарата», рассматриваемого в микроскоп) с помощью биметаллических пластин с подогревателями можно перемещать в небольших пределах. Величина перемещения регулируется дистанционно изменением тока через подогреватели.
Недостаток: величина перемещения непостоянна и зависит от условий охлаждения (окружающей температуры, сквозняков и т. п.)
В судостроении [ править | править код ]
Биметаллические (а также триметаллические) пластины используются для сварки разнородных металлов в целях предотвращения контактной (гальванической) коррозии. В судостроении применяются как для стыковки алюминиевой надстройки со стальным корпусом, так и для соединения декоративных элементов из нержавеющей стали с алюминиевой конструкцией.
Неметаллические аналоги [ править | править код ]
Для работы в агрессивных средах свойствами, подобными биметаллам, обладают спаи из стёкол или керамики с различным КТР,
Расчёт пластины [ править | править код ]
Изгиб (кривизна кривой, обратная величина к радиусу изгиба) биметаллической пластины [3] :
κ = 6 E 1 E 2 ( h 1 + h 2 ) h 1 h 2 ε E 1 2 h 1 4 + 4 E 1 E 2 h 1 3 h 2 + 6 E 1 E 2 h 1 2 h 2 2 + 4 E 1 E 2 h 2 3 h 1 + E 2 2 h 2 4 <displaystyle kappa =<frac <6E_<1>E_<2>(h_<1>+h_<2>)h_<1>h_<2>varepsilon ><1>^<2>h_<1>^<4>+4E_<1>E_<2>h_<1>^<3>h_<2>+6E_<1>E_<2>h_<1>^<2>h_<2>^<2>+4E_<1>E_<2>h_<2>^<3>h_<1>+E_<2>^<2>h_<2>^<4>>>> 1>
- ε = ( α 1 − α 2 ) Δ T <displaystyle varepsilon =(alpha _<1>-alpha _<2>)Delta T>;
- E 1 <displaystyle E_<1>>— модуль Юнга материала 1 (здесь и ниже для материала 2 индексы, соответственно, 2);
- h 1 <displaystyle h_<1>>— толщина материала 1;
- α 1 <displaystyle alpha _<1>>— коэффициент теплового расширения материала 1;
- Δ T <displaystyle Delta T>— разность между температурой, при которой вычисляется изгиб, и температурой, при которой изгиб отсутствует.
Выражение кривизны приведено для случая равенства нулю коэффициентов Пуассона сопрягаемых пластин. Общий случай рассмотрен в работе [5].
История [ править | править код ]
По-видимому, биметаллические пластины были созданы в XVIII веке в Англии часовщиком Джоном Харрисоном для термокомпенсации его морского хронометра «H3». [4] .
Примечания [ править | править код ]
- ↑Биметаллическая лента в жидком азоте (англ.)
- ↑Биметаллические качели (фото)
- ↑Clyne, TW. «Res >(недоступная ссылка) (англ.) , pdf, 36KB
- ↑ Sobel, Dava. «Longitude», London, Fourth Estate, 1995, ISBN 0-00-721446-4, стр. 103 (англ.)
1. биметаллическая пластина является теплоизолятором.
2. расширение тел при нагревании называется испарением.
3. тела, которые внутреннюю энергию, называют источниками тепла.
4. конвекция наблюдается только в жидкостях и газах.
Ответы на вопрос
на тело действует только сила тяжести
v=δs/δt считая с начала движения t₁=0
распишем проекции сил на горизонтальную и вертикальную оси:
где f – внешняя сила, alpha – угол
итоговая формула fтр=k*m*g*cos(alpha)*l/(cos(alpha)+k*sin(alpha))
числовой ответ 13,386 кдж.
пусть х – собственная скорость человека (в эскалаторах в минуту), а
y – скорость эскалатора. тогда получаем систему
2 * x + y = 1 / (1 – 1/4) = 4/3
решив систему получаем: х = 1/3 ; y = 2/3.
следовательно, человек, стоя на эскалаторе, спускается вниз за