Меню Рубрики

Блок питания для сварочного инвертора

Содержание

Блок питания не претендует на новизну схемотехники. Разработка проведена с целью сделать БП из доступных деталей. Радиодетали извлечены из компьютерных БП АТХ. В общем из радиохлама.

Серьёзно пришлось отнестись только к подбору и приобретению выпрямительных диодов.
БП состоит из двух БП. Один из них обратноход, фактически повторён БП из даташита на микросхему ТОР-250.
На выходе БП +14,4 Вольта 2 Ампера для питания основных узлов сварочника и +28 вольт для питания микросхемы TL-494 (KA7500).
А так же 3 выходных напряжения по 14,4@0.25 для питания драйверов мостовых схем.
Второй БП предназначен для питания двигателя подачи проволоки в сварочных полуавтоматах. Он обеспечивает напряжение 27 Вольт при токе 3 Ампера. Без дополнительного охлаждения он способен обеспечить 3 ампера в течении 5 минут. При токе до 2 ампер время работы не ограничено.

В первом БП применена защита по току из даташита. Это резистор на 3-ей ножке. Я выбрал 7,5 ком, что обеспечивает 2 ампера на выходе. При прогреве защита срабатывает при 2-х амперах. БП начинает "всхлипывать" пытаясь подняться.

В мостовом БП защита настроена на 3 ампера, но при желании, а так же при дополнительном охлаждении может быть перестроена на ток до восьми Ампер. Защита выполнена на управляемом стабилитроне TL431. Фактически TL сравнивает 2 напряжения, и когда напряжение на резисторах R18, R19 станет меньше напряжения на управляющем электроде + Uref микросхема открывает ток базы транзистора A733. Это увеличит напряжение на 4-ом выводе TL-494, увеличит мёртвое время и уменьшит ток БП. Таким образом "короткое" БП держит без "бахов".
На втором БП так же намотана дополнительная обмотка для питания "главной кнопки" на держаке 12 вольт.

Так же на плате для удобства смонтирована схема задержки включения реле и ключ управления вентилятором.

Конструкция.

Всё устройство смонтированно на одной печптной плате. Топология ПП здесь. Каждый под себя сможет подправить.
У меня, например, было ограничение высоты 32мм. Кому-то это не надо, можно будет поставить эл. конденсаторы "манхэттеном", тогда размер в плане можно значительно уменьшить.
Силовые трансформаторы, естественно, разбирались подогревом, перематывались, склеивались. Даже изоляцию применил ту же.

Настройка.

Для начала монтируем частично, как показано на фотке.

И запускаем только "маленький БП. После этого можно посмотреть, как работает TL-494, в частности настроить частоту импульсов задающего генератора, проверить, правильно-ли подключён промежуточный трансформатор. Его я не перематывал, просто выпаял из АТХ, но перед этим внимательно посмотрел распиновку. После выпайки уже не разберёшся.

Тут главное не насмешить и остаться целеньким. Ещё разик напоминаю о вечных ценностях. А впрочим вот они.

слева направо, разделительный трансформатор, ЛАТР и реостат с амперметром.

А вот фотосессия.

Питание драйверов требует тщательной проверки, т.к. эти напряжения не контролируются обратной связью. У меня, в отличии от схемы, намотаны обмотки 3х6 витков. В рехиме ХХ на выходе выпрямителей я получил 3 напряжения по 14/14,2/14,3 вольта. При этом длительность импульса в "прямом ходе" 2мксек, период 18,5 мкСек. Удобно наблюдать на обмотке ОС (5 витков). Далее я нагрузил эти обмотки на резисторы 94 Ома. Напряжение упало до 11,7 вольта. Длительность увеличилась до 2,4 мкСек, значит всё-таки ОС существует, но недостаточная для полной компенсации падения напряжения. Далее нагружаю основной выход резистором 16 Ом, ток около 0,9 Ампера. Напряжение на обмотках драйверов выправилось и достигло 14,7/14,5/14,8 Вольт. Длительность 4 мкСек, период 8 мкСек. Теперь ещё один эксперимент, нагрузим одно плечё на удвоенный ток, т.е. резисторы 94/94/47 Ом. Такая ситуация и будет при питании драйверов мостовых схем. Напряжения на выходе 14,8/14,6/14,6. Это минимум для питания драйверов, поэтому для повторения я поставил на схеме 7 витков, что примерно будет соответствовать 17 вольтам.
Ну и для полноты картины такая ситуация. Основной источник нагружен на 0,9 Ампер, источники драйверов не нагружены. Напряжения на их выходах при 6 витках 18,2 Вольта.
Вывод, такую схему питания драйверов можно использовать только в случае, если основной источник, охваченый ОС нагружен током не менее 0,5 Ампера. В принципе это условие легко выполняется в реальных схемах, но это надо помнить при конструировании инвертеров с таким БП.

Для выполнения сварочных работ в домашних условиях незаменим сварочный инверторный аппарат. Принцип его работы основан на использовании транзисторов и переключателей, при помощи которых сначала сетевое напряжение трансформируется в постоянное.

Затем изменяются характеристики тока (повышается частота синусоиды). Эти действия приводят к понижению значения напряжения, что приводит к выпрямлению тока, при этом частота тока не изменяется.

Широкое использование данных аппаратов связано с рядом его достоинств, к которым можно отнести:

  • Небольшие габаритные размеры, а также малый вес, что существенно облегчает труд при сварочных работах и позволяет расположить аппарат в удобном месте;
  • Возможность изготовить его самостоятельно, затратив немного средств. Кроме этого, сборка своими руками позволяет подобрать детали с необходимыми характеристиками, а также в дальнейшем достаточно просто выполнить ремонт агрегата или замену деталей для корректировки характеристик;
  • Высокий КПД, что позволяет ему конкурировать с готовыми аппаратами.

Недостатками сварочного инвертора, который изготовлен самостоятельно, являются:

  • Малый срок службы, при неверно подобранных деталях;
  • Отсутствует возможность реализовать дополнительные функции, которые способны улучшать качество сварного шва;
  • При необходимости получить аппарат большой мощности требуется организация дополнительной системы охлаждения, что увеличивает конечную стоимость и габариты.

Следует учесть, что самостоятельная сборка инвертора достаточно кропотливый труд, занимающий много времени и требующий определенных навыков. Но современные производители предлагают широкий выбор комплектующих, что значительно облегчает их выбор. Сам подбор деталей основан на совместимости параметров по типам и характеристика, а также на возможности простой замены в дальнейшем.

Основными элементами инвертора являются:

  • блок питания;
  • силовая часть и ее ключи.

К базовым выходным характеристикам относятся:

  • потребляемый ток, причем его максимальное значение;
  • напряжение и частота в сети;
  • значение тока сварки, при котором будет выполняться шов.
Читайте также:  Бош dmf 10 zoom инструкция

Подготовительный этап

Перед тем как приступить к покупке деталей для изготовления инвертора необходимо точно представлять значения выходных параметров, а также иметь электрические схемы всех элементов (общая схема, блока питания).

Рассмотрим изготовление сварочного аппарата с входными характеристиками:

  • напряжение сети 220 В;
  • частота 50 ГЦ;
  • сила тока 32 А.

На выходе получится ток, преобразованный до величины 250 А, то есть увеличил свое входное значение в 8 раз. Данным аппаратом можно выполнять сварной шов, расположив электрод менее 1 см к свариваемой детали.

Перед тем как приступить к сборке аппарата необходимо подготовить следующие материалы и инструменты:

  • отвертки (плоские и крестовые) разных размеров;
  • приборы для измерения напряжения и силы тока (вольтметр и амперметр), которые можно заменить современным универсальным измерительным прибором;
  • паяльник с маленьким жалом;
  • компоненты для выполнения паяльных работ (канифоль, проволока);
  • осциллограф, применение которого позволит контролировать изменение синусоиды тока;
  • специальная сталь с подходящими электротехническими параметрами;
  • хлопковая и стекловолоконная ткани;
  • сердечник для трансформатора;
  • обмотки трансформаторов:
  • первичная на 100 витков из проволоки диаметром 0,3 мм
  • вторичные (внутренняя – это 15 витков проволокой 1 мм, средняя – это 15 витков из проволоки 0,2 мм, наружная – 20 витков, выполненные проволокой 0,35 мм);
  • текстолит;
  • болты и саморезы;
  • транзисторы с необходимыми характеристиками;
  • провода разного сечения;
  • силовой кабель;
  • изолента или специальная бумага.

После выполнения подготовительных работ можно приступать к сборке.

Устройство сварочного инвертора

Блок питания инвертора

Плату, где располагается блок питания инвертора, собирают отдельно от силового элемента аппарата. Кроме этого, их требуется разделить между собой листом металла, который закреплен к корпусу жестко.

Основным элементом блока питания является трансформатор, который можно изготовить самостоятельно. С его помощью напряжение, которое поступает из сети, будет преобразовываться до величины безопасной для жизни, а затем повышать силу тока для выполнения сварки.

Материалом для сердечника может быть железо размеров 7х7 или 8х8. При этом можно брать как стандартные пластины или отрезать требуемый кусок металла от имеющегося листа. Обмотка выполняется медным проводом марки ПЭВ, так как именно этот материал максимально обеспечивает требуемые характеристики (малое сечение при достаточной ширине).

Использование другого материала в качестве обмотки может существенно повлиять на характеристики трансформатора, например, увеличить нагрев данной детали.

При этом каждый виток должен плотно прилегать к предыдущему, при этом нахлеста лучше избегать. После того как все 100 витков выполнены, необходимо уложить слой специальной изолирующей бумаги или ткани из стекловолокон. Следует учесть, что бумага будет темнеть в процессе эксплуатации.

Далее выполняют вторичную обмотку. Для этого необходимо взять медный провод сечением 1 мм и сделать 15 оборотов, стараясь распределить их по всей ширине, на равном расстоянии друг от друга. После покрытия их лаком и просушки, наматывают 2 слой медным проводом сечением 0,2 мм, делая также 15 оборотов.

Их тоже необходимо распределить, как и в предыдущем случае и изолировать. Последним слоем для вторичной обмотки будет ПЭВ сечением 0,35 мм, витков при этом будет 20. Последний слой также необходимо изолировать.

Блок питания инверторного сварочного аппарата

Корпус

Далее приступают к изготовлению корпуса. Его размер должен быть соизмерим с габаритами трансформатора и плюс 70% на размещение остальных деталей инвертора. Сам корпус может быть выполнен из листовой стали толщиной 0,5-1 мм.

Для соединения углов можно использовать болты или при помощи специальных гибочных станков изогнуть лист до нужных размеров. Если на корпусе расположить ручку для крепления инвертора на ремне или для простоты переноса, то это в значительной степени облегчит эксплуатацию прибора в дальнейшем.

Кроме этого, конструкция корпуса должна предусматривать достаточно простой доступ ко всем деталям, расположенным внутри него. На нем необходимо проделать несколько технологических отверстий для переключателей, кнопки питания, световой сигнализации о работоспособности, а также кабельные разъемы.

Схема генератора сварочного инвертора

Силовая часть и инверторный блок

Силовым блоком для инвертора служит трансформатор, особенностью которого является наличие 2 сердечников, которые располагают рядом с маленьким зазором, прокладывая лист бумаги. Этот трансформатор собирается аналогично предыдущему. Важной деталью является то, что изоляционный слой между витками провода необходимо усилить, что позволит не допустить пробоя напряжения. Кроме этого, между слоями проводов укладывают прокладки, выполненные из фторопласта.

К силовой части можно отнести конденсаторы, которые соединены согласно схеме. Они предназначены для уменьшения резонанса трансформаторов, а также призваны минимизировать и компенсировать потери тока в транзисторах.

Инверторный блок аппарата служит для преобразования тока, у которого на выходе повышается частота. Для этого в инвертор используют транзисторы или диоды. Если решено использовать диоды в этом блоке, то их необходимо собрать в косой мост по специальной схеме. Выводы из него идут к транзисторам, которые предназначены для возврата переменного тока с большей частотой. Диодный мост и транзисторы должны быть разделены перегородкой.

Фото блока питания самодельного сварочного инвертора

Система охлаждения

Так как все элементы агрегата подвержены нагреву, то необходимо организовать систему охлаждения, которая обеспечит бесперебойную надежную работу. Для этого можно использовать кулеры от компьютеров, а также выполнить несколько дополнительных отверстий в корпусе для легкого доступа воздуха внутрь аппарата. Однако таких отверстий не должно быть слишком много, чтобы избежать попадания лишней пыли в корпус.

Кулеры должны располагаться таким образом, чтобы они могли работать на вывод воздуха из корпуса аппарата. Элементы охлаждения нуждаются в профилактике, например, замене термопасты, поэтому доступ к ним должен быть простой.

Установка такого элемента, как термодатчик, и дальнейшее его соединение со светодиодом на корпусе, позволит подавать сигнал при достижении недопустимой температуры и отключать инвертор от питания для охлаждения.

Трансформаторный сварочный аппарат своими руками

Сборка

Сборка инвертора осуществляется в следующем порядке:

  • на основание корпуса располагается трансформатор, диодный мост, схема управления;
  • выполняется скрутка, спайка и крепление между собой всех проводов;
  • на наружной панели выводятся световая индикация, кнопка пуска, разъем кабеля.
Читайте также:  Аккумуляторный инструмент макита на одной платформе набор

Когда все установлено, можно проверять работу аппарата.

Проверка работы

Чтобы проверить аппарат необходимо использовать для этого осциллограф. Инвертор подключают к сети в 220 В, а затем по прибору проверяются, насколько выходные параметры соответствуют требуемым. Например, напряжение должно быть в пределах 500-550 В. При абсолютно правильной сборке и правильно подобранных деталях, это значение не должно переходить порог в 350 В.

После таких замеров и приемлемых показателей осциллографа, можно приступать к выполнению сварочного шва. После того, как первый электрод полностью выгорит, необходимо провести замеры температуры на трансформаторе. Если он кипит, то схема нуждается в доработке, аппарат необходимо отключить и внести изменения. Только после того, как приняты меры по устранению данного недочета, можно повторно выполнить запуск с таким же замером температуры после окончания работы.

Пример компоновки передней панели инвертора

Правила эксплуатации

Сварочный инвертор можно применять как для сваривания деталей выполненных из черного металла, так и вести работы с цветным. Он полезен как в частном доме, на даче, так и в гараже.

При его эксплуатации необходимо следить за качеством напряжения и частоты в сети.

Для продолжительного использования данного агрегата необходимо периодически проверять работоспособность отдельных его чистке, выполнять профилактические мероприятия по очистке его от пыли и грязи.

Блиц-советы

При самостоятельном изготовлении инвертора необходимо:

  • иметь схемы всех элементов аппарата;
  • правильно подбирать комплектующие;
  • выдерживать все необходимые зазоры и тщательно изолировать элементы;
  • соблюдать правила техники безопасности.

Вашему вниманию представлена схема сварочного инвертора, который вы можете собрать своими руками. Максимальный потребляемый ток – 32 ампера, 220 вольт. Ток сварки – около 250 ампер, что позволяет без проблем варить электродом 5-кой, длина дуги 1 см, переходящим больше 1 см в низкотемпературную плазму. КПД источника на уровне магазинных, а может и лучше (имеется в виду инверторные).

На рисунке 1 приведена схема блока питания для сварочного.


Рис.1 Принципиальная схема блока питания

Трансформатор намотан на феррите Ш7х7 или 8х8
Первичка имеет 100 витков провода ПЭВ 0.3мм
Вторичка 2 имеет 15 витков провода ПЭВ 1мм
Вторичка 3 имеет 15 витков ПЭВ 0.2мм
Вторичка 4 и 5 по 20 витков провода ПЭВ 0.35мм
Все обмотки необходимо мотать во всю ширину каркаса, это дает ощутимо более стабильное напряжение.


Рис.2 Принципиальная схема сварочного инвертора

На рисунке 2 – схема сварочника. Частота – 41 кГц, но можно попробовать и 55 кГц. Трансформатор на 55кгц тогда 9 витков на 3 витка, для увеличения ПВ трансформатора.

Трансформатор на 41кгц – два комплекта Ш20х28 2000нм, зазор 0.05мм, газета прокладка, 12вит х 4вит, 10кв мм х 30 кв мм, медной лентой (жесть) в бумаге. Обмотки трансформатора сделаны из медной жести толщиной 0.25 мм шириной 40мм обернутые для изоляции в бумагу от кассового аппарата. Вторичка делается из трех слоев жести (бутерброд) разделенных между собой фторопластовой лентой, для изоляции между собой, для лучшей проводимости высоко- частотных токов, контактные концы вторички на выходе трансформатора спаяны вместе.

Дроссель L2 намотан на сердечнике Ш20х28, феррит 2000нм, 5 витков, 25 кв.мм, зазор 0.15 – 0.5мм (два слоя бумаги от принтера). Токовый трансформатор – датчик тока два кольца К30х18х7 первичка продетый провод через кольцо, вторичка 85 витков провод толщиной 0.5мм.

Сборка сварочного

Намотка трансформатора

Намотку трансформатора нужно делать с помощью медной жести толщиной 0.3мм и шириной 40мм, ее нужно обернуть термобумагой от кассового аппарата толщиной 0.05мм, эта бумага прочная и не так рвется как обычная при намотке трансформатора.

Вы скажите, а почему не намотать обычным толстым проводом, а нельзя потому что этот трансформатор работает на высокочастотных токах и эти токи вытесняются на поверхность проводника и середину толстого провода не задействует, что приводит к нагреву, называется это явление Скин эффект!

И с ним надо бороться, просто надо делать проводник с большой поверхностью, вот тонкая медная жесть этим и обладает она имеет большую поверхность по которой идет ток, а вторичная обмотка должна состоять из бутерброда трех медных лент разделенных фторопластовой пленкой, она тоньше и обернуты все эти слои в термобумагу. Эта бумага обладает свойством темнеть при нагреве, нам это не надо и плохо, от этого не будет пускай так и останется главное, что не рвется.

Можно намотать обмотки проводом ПЭВ сечением 0.5…0.7мм состоящих из нескольких десятков жил, но это хуже, так как провода круглые и состыкуются между собой с воздушными зазорами, которые замедляют теплообмен и имеют меньшую общую площадь сечения проводов вместе взятых в сравнении с жестью на 30%, которая может влезть окна ферритового сердечника.

У трансформатора греется не феррит, а обмотка поэтому нужно следовать этим рекомендациям.

Трансформатор и вся конструкция должны обдуваться внутри корпуса вентилятором на 220 вольт 0.13 ампера или больше.

Конструкция

Для охлаждения всех мощных компонентов хорошо использовать радиаторы с вентиляторами от старых компьютеров Pentium 4 и Athlon 64. Мне эти радиаторы достались из компьютерного магазина делающего модернизацию, всего по 3…4$ за штуку.

Силовой косой мост нужно делать на двух таких радиаторах, верхняя часть моста на одном, нижняя часть на другом. Прикрутить на эти радиаторы диоды моста HFA30 и HFA25 через слюдяную прокладку. IRG4PC50W нужно прикручивать без слюды через теплопроводящую пасту КТП8.

Выводы диодов и транзисторов нужно прикрутить на встречу друг другу на обоих радиаторах, а между выводами и двумя радиаторами вставить плату, соединяющею цепи питания 300вольт с деталями моста.

На схеме не указано нужно на эту плату в питание 300V припаять 12…14 штук конденсаторов по 0.15мк 630 вольт. Это нужно, чтобы выбросы трансформатора уходили в цепь питания, ликвидируя резонансные выбросы тока силовых ключей от трансформатора.

Остальная часть моста соединяется между собой навесным монтажом проводниками не большой длины.

Читайте также:  В системе отопления образовалась пробка

Ещё на схеме показаны снабберы, в них есть конденсаторы С15 С16 они должны быть марки К78-2 или СВВ-81. Всякий мусор туда ставить нельзя, так как снабберы выполняют важную роль:
первая – они глушат резонансные выбросы трансформатора
вторая – они значительно уменьшают потери IGBT при выключении так как IGBT открываются быстро, а вот закрываются гораздо медленнее и во время закрытия емкость С15 и С16 заряжается через диод VD32 VD31 дольше чем время закрытия IGBT, то есть этот снаббер перехватывает всю мощь на себя не давая выделяться теплу на ключе IGBT в три раза чем было бы без него.
Когда IGBT быстро открываются, то через резисторы R24 R25 снабберы плавно разряжаются и основная мощь выделяется на этих резисторах.

Настройка

Подать питание на ШИМ 15вольт и хотя бы на один вентилятор для разряда емкости С6 контролирующую время срабатывания реле.

Реле К1 нужно для замыкания резистора R11, после того, когда зарядятся конденсаторы С9…12 через резистор R11 который уменьшает всплеск тока при включении сварочного в сеть 220вольт.

Без резистора R11 на прямую, при включении получился бы большой БАХ во время зарядки емкости 3000мк 400V, для этого эта мера и нужна.

Проверить срабатывание реле замыкающие резистор R11 через 2…10 секунд после подачи питания на плату ШИМ.

Проверить плату ШИМ на присутствие прямоугольных импульсов идущих к оптронам HCPL3120 после срабатывания обоих реле К1 и К2.

Ширина импульсов должна быть шириной относительно нулевой паузе 44% нулевая 66%

Проверить драйвера на оптронах и усилителях ведущих прямоугольный сигнал амплитудой 15вольт убедится в том, что напряжение на IGBT затворах не превышает 16вольт.

Подать питание 15 Вольт на мост для проверки его работы на правильность изготовления моста.

Ток потребления при этом не должен превышать 100мА на холостом ходу.

Убедится в правильной фразировке обмоток силового трансформатора и трансформатора тока с помощью двух лучевого осциллографа .

Один луч осциллографа на первичке, второй на вторичке, чтобы фазы импульсов были одинаковые, разница только в напряжении обмоток.

Подать на мост питание от силовых конденсаторов С9…С12 через лампочку 220вольт 150..200ватт предварительно установив частоту ШИМ 55кГц подключить осциллограф на коллектор эмиттер нижнего IGBT транзистора посмотреть на форму сигнала, чтобы не было всплесков напряжения выше 330 вольт как обычно.

Начать понижать тактовую частоту ШИМ до появления на нижнем ключе IGBT маленького загиба говорящем о перенасыщении трансформатора, записать эту частоту на которой произошел загиб поделить ее на 2 и результат прибавить к частоте перенасыщения, например перенасыщение 30кГц делим на 2 = 15 и 30+15=45, 45 это и есть рабочая частота трансформатора и ШИМа.

Ток потребления моста должен быть около 150ма и лампочка должна еле светиться, если она светится очень ярко, это говорит о пробое обмоток трансформатора или не правильно собранном мосте.

Подключить к выходу сварочного провода длиной не мене 2 метров для создания добавочной индуктивности выхода.

Подать питание на мост уже через чайник 2200ватт, а на лампочку установить силу тока на ШИМ минимум R3 ближе к резистору R5, замкнуть выход сварочного проконтролировать напряжение на нижнем ключе моста, чтобы было не более 360вольт по осциллографу, при этом не должно быть ни какого шума от трансформатора. Если он есть – убедиться в правильной фазировке трансформатора -датчика тока пропустить провод в обратную сторону через кольцо.

Если шум остался, то нужно расположить плату ШИМ и драйвера на оптронах подальше от источников помех в основном силовой трансформатор и дроссель L2 и силовые проводники.

Еще при сборке моста драйвера нужно устанавливать рядом с радиаторами моста над IGBT транзисторами и не ближе к резисторам R24 R25 на 3 сантиметра. Соединения выхода драйвера и затвора IGBT должны быть короткие. Проводники идущие от ШИМ к оптронам не должны проходить рядом с источниками помех и должны быть как можно короче.

Все сигнальные провода от токового трансформатора и идущие к оптронам от ШИМ должны быть скрученные, чтобы понизить уровень помех и должны быть как можно короче.

Дальше начинаем повышать ток сварочного с помощью резистора R3 ближе к резистору R4 выход сварочного замкнут на ключе нижнего IGBT, ширина импульса чуть увеличивается, что свидетельствует о работе ШИМ. Ток больше – ширина больше, ток меньше – ширина меньше.

Ни какого шума быть не должно иначе выйдут из строя IGBT.

Добавлять ток и слушать, смотреть осциллограф на превышение напряжения нижнего ключа, чтобы не выше 500вольт, максимум 550 вольт в выбросе, но обычно 340 вольт.

Дойти до тока, где ширина резко становиться максимальной говорящим, что чайник не может дать максимальный ток.

Все, теперь на прямую без чайника идем от минимума до максимума, смотреть осциллограф и слушать, чтобы было тихо. Дойти до максимального тока, ширина должна увеличиться, выбросы в норме, не более 340вольт обычно.

Начинать варить, в начале 10 секунд. Проверяем радиаторы, потом 20 секунд, тоже холодные и 1 минуту трансформатор теплый, спалить 2 длинных электрода 4мм трансформатор горечеватый

Радиаторы диодов 150ebu02 заметно нагрелись после трех электродов, варить уже тяжело, человек устает, хотя варится классно, трансформатор горяченький, да и так уже не кто не варит. Вентилятор, через 2 минуты трансформатор доводит до теплого состояния и можно варить снова до опупения.

Ниже вы можете скачать печатные платы в формате LAY и др. файлы

Евгений Родиков (evgen100777 [собака] rambler.ru). По всем возникшим вопросам при сборке сварочника пишите на E-Mail.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *