Меню Рубрики

Блок питания для усилителя на tda7294

Файлы для скачивания
Про сравнение TDA7294 и LM3886
Подробнее про TDA7293/7294
Подробнее про блок питания
Здесь печатная плата для самостоятельного повторения усилителя на TDA7293/7294
Здесь хорошая статься для самостоятельной сборки и наладки защиты АС.
Здесь печатная плата для самостоятельного повторения блока питания и автоматики

Данный усилитель на TDA7294 был вынужден сделать, т.к старый на LM 3886 собранный лет 10 назад не подходил к новому компьютерному столу да и выглядел не презентабельно. Разбирать его не стал, а решил сделать новый. Почему именно на TDA? Да потому что TDA 7294 в нашем городе стоит в 2 раза дешевле и звук у нее чуть-чуть лучше ЛМки. Стоимость LM3886- 390 руб., TDA7294 179 руб.

Схема усилителя проста. Любой начинающий ее может повторить и при правильном монтаже сразу работает.

На старом усилителе, при включении питания были хорошие щелчки в АС. В этом усилителе собрал устройство задержки включения и защиты громкоговорителей. В моем случае задержка включения АС после включения усилителя составила 5сек. Печатную плату разводил сам, но к сожалению исходника не осталось. При желании по фото можно восстановить.

Т.к усилитель 99% времени подключен к компьютеру, то по "первички" трансформатора добавил немного автоматики для включения и выключения усилителя. Выключатель SA2 на 3 положения. В среднем положении ничего не включено- усилитель не работает. В верхнем по схеме — ВКЛ всегда. В нижем по схеме — ВКЛ от USB т.е при включении ПК включается и усилитель и на оборот.

Статья взята с сайта pavel.artmech.com
Автор статьи: Новик П.Е.

Введение

Конструирование усилителя всегда было задачей не простой. К счастью, в последнее время, появилось много интегрированных решений, облегчающий жизнь конструкторам-любителям. Я тоже не стал себе усложнять задачу и выбрал наиболее простой, качественный, с малым количеством деталей, не требующий настройки и стабильно работающий усилитель на микросхеме TDA7294 от SGS-THOMSON MICROELECTRONICS. В последнее время в интернете распространились претензии к этой микросхеме, которые выражались примерно в следующем: "самопроизвольно возбуждается, при неправильной разводке; горит, по любому поводу, и т.д.". Ничего подобного. Спалить её можно только неправильным включением или замыканием, а случаев возбуждения не было замечено ни разу, и не только у меня. Кроме того, у неё есть внутренняя защита от короткого замыкания в нагрузке и защита от перегрева. Также в ней реализованы функция приглушения (используется для предотвращения щелчков при включении) и функция режима ожидания (когда нет сигнала). Эта ИМС представляет собой УНЧ класса АВ. Одной из основных особенностей этой микросхемы является применение полевых транзисторов в предварительных и выходных каскадах усиления. К ее достоинствам относятся большая выходная мощность (до 100 Вт на нагрузке сопротивлением 4 Ом), возможность работы в широком диапазоне питающих напряжений, высокие технические характеристики (малые искажения, низкий уровень шума, широкий диапазон рабочих частот и т.д.), минимум необходимых внешних компонентов и небольшая стоимость

Основные характеристики TDA7294:

Типовое Максимум Единицы Напряжение питания ±10 ±40 В Диапазон воспроизводимых частот сигнал 3db
Выходная мощность 1Вт 20-20000 Гц Долговременная выходная мощность (RMS) коэф-т гармоник 0,5%:
Uп = ± 35 В, Rн = 8 Ом
Uп = ± 31 В, Rн = 6 Ом
Uп = ± 27 В, Rн = 4 Ом 60
60
60 70
70
70 Вт Пиковая музыкальная выходная мощность (RMS), длительность 1 сек. коэф-т гармоник 10%:
Uп = ± 38 В, Rн = 8 Ом
Uп = ± 33 В, Rн = 6 Ом
Uп = ± 29 В, Rн = 4 Ом 100
100
100 Вт Общие гармонические искажения Po = 5Вт; 1кГц
Po = 0,1-50Вт; 20-20000Гц 0,005 0,1 % Uп = ± 27 В, Rн = 4 Ом:
Po = 5Вт; 1кГц
Po = 0,1-50Вт; 20-20000Гц 0,01

0,1

%

Температура срабатывания защиты 145 0 C Ток в режиме покоя 20 30 60 мА Входное сопротивление 100 кОм Коэффициент усиления по напряжению 24 30 40 дБ Пиковое значение выходного тока 10 А Рабочий диапазон температур 0 70 0 C Термосопротивление корпуса 1,5 0 C/Вт

Схем включения этой микросхемы достаточно много, рассмотрю самую простую:

Позиция Наименование Тип Количество
С1 0,47 мкФ К73-17 1
С2, С4, С5, С10 22 мкФ х 50 B К50-35 4
С3 100 пФ 1
C6, С7 220 мкФ х 50 B К50-35 2
C8, С9 0,1 мкФ К73-17 2
DA1 TDA7294 1
R1 680 Ом МЛТ-0,25 1
R2…R4 22 кОм МЛТ-0,25 3
R5 10 кОм МЛТ-0,25 1
R6 47 кОм МЛТ-0,25 1
R7 15 кОм МЛТ-0,25 1

Микросхему необходимо установить на радиатор площадью >600 см 2 . Будьте внимательны, на корпусе микросхемы находится не общий, а минус питания! При установке микросхемы на радиатор лучше использовать термопасту. Желательно проложить между микросхемой и радиатором диэлектрик (слюду, например). В первый раз я не придал этому значения, подумал, а с какого такого перепугу я буду замыкать радиатор на корпус, но в процессе отладки конструкции, нечаянно упавший со стола пинцет замкнул как раз радиатор на корпус. Взрыв был классным! Микросхемы просто разнесло на куски! В общем отделался лёгким испугом и 10$ :). На плате с усилителем желательно также поставить на питание мощные электролиты 10000мк х 50в, дабы при пиках мощности провода от блока питания не давали провалы напряжения. Вообще, чем больше ёмкость конденсаторов на питании – тем лучше, как говорится "кашу маслом не испортишь". Конденсатор C3 можно убрать (или не ставить), я так и сделал. Как выяснилось, именно из-за него, при включении перед усилителем регулятора громкости (простого переменного резистора) получалась RC цепочка, которая при увеличении громкости косила высокие частоты, а вообще он нужен чтобы предотвращать возбуждение усилителя при подаче на вход ультразвука. Вместо C6, C7 я поставил на плате 10000мк х 50в, С8, С9 можно ставить любого близкого номинала – это фильтры питания, они могут стоять в блоке питания, а можно их припаять навесным монтажом, что я и сделал.

Читайте также:  Железный купорос применение в садоводстве осенью виноград

Я лично не очень люблю использовать готовые платы, по одной простой причине – трудно найти точно такие же по размеру элементы. Но в усилителе разводка может сильно влиять на качество звука, поэтому Вам решать какую плату выбрать. Поскольку я собирал усилитель сразу на 5-6 каналов, соответственно плата сразу на 3 канала:

В векторном формате (Corel Draw 12)
Блок питания усилителя, фильтр НЧ и др.

Почему-то, блок питания усилителя вызывает много вопросов. На самом деле, как раз тут-то, всё достаточно просто. Трансформатор, диодный мост и конденсаторы – это основные элементы блока питания. Этого достаточно для сборки самого простого блока питания.

Для питания усилителя мощности стабилизация напряжения неважна, а важны ёмкости конденсаторов по питанию, чем больше – тем лучше. Важна также толщина проводов от блока питания до усилителя.

Мой блок питания реализован по следующеё схеме:

Питание +-15В предназначено для питания операционных усилителей в предварительных каскадах усилителя. Можно обойтись без дополнительных обмоток и диодных мостов, запитав модуль стабилизации от 40В, но стабилизатору придётся гасить очень большой перепад напряжения, что приведёт к значительному нагреву микросхем стабилизаторов. Микросхемы стабилизаторов 7805/7905 – импортные аналоги наших КРЕН.

Возможны вариации блоков А1 и А2:

Блок A1 – фильтр для подавления помех питания.

Блок А2 – блок стабилизированных напряжений +-15В. Первый альтернативный вариант – простой в реализации, для питания слаботочных источников, второй – качественный стабилизатор, но требует точного подбора комплектующих (резисторов), иначе получите перекос плеч "+" и "-", что даст потом перекос нуля на операционных усилителях.

Трансформатор блока питания для стерео усилителя на 100Ват должен быть примерно 200Ват. Поскольку я делал усилитель на 5 каналов, мне понадобился трансформатор помощнее. Но мне не надо было выкачивать все 100Ват, да и все каналы не могут одновременно отбирать мощность. Мне попался на рынке трансформатор TESLA (ниже на фото) ват эдак на 250 – 4 обмотки проводом 1,5мм по 17В и 4 обмотки по 6,3В. Соединив их последовательно я получил нужные напряжения, правда пришлось немного отмотать две обмотки на 17В, дабы получить суммарное напряжение двух обмоток

27-30В, поскольку обмотки были сверху – труда особого это не составило.

Отличная вещь – тороидальный трансформатор, такие используются для питания галогенок в светильниках, на рынках и магазинах их полно. Если конструктивно два таких трансформатора положить один на другой – излучение будет взаимно компенсироваться, что уменьшит наводки на элементы усилителя. Беда в том, что они имеют одну обмотку на 12В. У нас на радиорынке можно сделать такой трансформатор на заказ, но стоит это удовольствие будет прилично. В принципе, можно купить 2 трансформатора на 100-150Ват и перемотать вторичные обмотки, количество витков вторичной обмотки надо будет увеличить примерно в 2-2,4 раза.

Диоды / диодные мосты

Можно купить импортные диодные сборки с током 8-12А, это значительно упрощает конструкцию. Я использовал импульсные диоды КД 213, причём делал отдельно по мосту на каждое плечо, чтобы дать запас по току для диодов. При включении происходит заряд мощных конденсаторов, бросок тока при этом весьма существенен, при напряжении 40 В и емкости 10000 мкФ ток зарядки такого конденсатора составляет

10 А, соответственно по двум плечам 20А. При этом трансформатор и выпрямительные диоды кратковременно работают в режиме короткого замыкания. Пробой диодов по току даст неприятные последствия. Диоды были установлены на радиаторы, но я не обнаружил нагрева самих диодов – радиаторы были холодные. Для устранения помех по питанию, рекомендуют параллельно каждому диоду в мосте, устанавливать конденсатор

0,33мкф тип К73-17. Я правда, делать этого не стал. В цепи +-15В можно применить мосты типа КЦ405, на ток 1-2А.

Самое занудное занятие – корпус. В качестве корпуса я взял старый слим корпус от персонального компьютера. Пришлось его немного укоротить по глубине, хотя это было непросто. Считаю, что корпус получился удачным – блок питания находится в отдельном отсеке и можно ещё 3 канала усиления засунуть в корпус свободно.

После полевых испытаний, выяснилось, что нелишне поставить вентиляторы на обдув радиаторов, несмотря на то, что радиаторы имеют весьма внушительные размеры. Пришлось надырявить корпус снизу и сверху, для хорошей вентиляции. Вентиляторы подключены через 100Ом подстроечный резистор 1Вт на самые малые обороты (см. след рисунок).

Микросхемы стоят на слюде и термопасте, винты тоже надо изолировать. Радиаторы и плата прикручены к корпусу через диэлектрические стойки.

Очень хотелось этого не делать, только в надежде, что это всё временно.

После навешивания этих кишек, в колонках появился небольшой гул, видимо с "землёй" чё то стало не так. Мечтаю о том дне, когда я выкину это всё из усилителя и буду использовать его только как усилитель мощности.

Плата сумматора, фильтра НЧ, фазовращателя

Сзади получилось красивей, хоть ты его разверни попой вперёд. :)

TDA 7294 $25,00
конденсаторы (мощные элетролиты) $15,00
конденсаторы (остальные) $15,00
разъемы $8,00
кнопка включения $1,00
диоды $0,50
трансформатор $10,50
радиаторы с кулерами $40,00
резисторы $3,00
переменные резисторы + ручки $10,00
галетник $5,00
корпус $5,00
операционные усилители $4,00
стабилизаторы напряжения $2,00
Всего $144,00

Да, недешево что-то получилось. Скорее всего чего-то не учёл, просто покупалось, как всегда, всего гораздо больше, ведь пришлось ещё экспериментировать, да и сжёг я 2 микросхемы и взорвал один мощный электролит (всего этого я не учитывал). Это расчёт усилителя на 5 каналов. Как видно очень недёшево получились радиаторы, я использовал недорогие, но массивные кулера для процессоров, на то время (полтора года назад) они были очень хороши для охлаждения процессоров. Если учесть, что ресивер начального уровня можно купить за 240$, то можно и задуматься – а надо ли Вам это :), правда там стоит усилитель более низкого качества. Усилители такого класса стоят порядка 500$.

Читайте также:  Блок вызова домофона eltis

Статья взята с сайта pavel.artmech.com
Автор статьи: Новик П.Е.

Введение

Конструирование усилителя всегда было задачей не простой. К счастью, в последнее время, появилось много интегрированных решений, облегчающий жизнь конструкторам-любителям. Я тоже не стал себе усложнять задачу и выбрал наиболее простой, качественный, с малым количеством деталей, не требующий настройки и стабильно работающий усилитель на микросхеме TDA7294 от SGS-THOMSON MICROELECTRONICS. В последнее время в интернете распространились претензии к этой микросхеме, которые выражались примерно в следующем: "самопроизвольно возбуждается, при неправильной разводке; горит, по любому поводу, и т.д.". Ничего подобного. Спалить её можно только неправильным включением или замыканием, а случаев возбуждения не было замечено ни разу, и не только у меня. Кроме того, у неё есть внутренняя защита от короткого замыкания в нагрузке и защита от перегрева. Также в ней реализованы функция приглушения (используется для предотвращения щелчков при включении) и функция режима ожидания (когда нет сигнала). Эта ИМС представляет собой УНЧ класса АВ. Одной из основных особенностей этой микросхемы является применение полевых транзисторов в предварительных и выходных каскадах усиления. К ее достоинствам относятся большая выходная мощность (до 100 Вт на нагрузке сопротивлением 4 Ом), возможность работы в широком диапазоне питающих напряжений, высокие технические характеристики (малые искажения, низкий уровень шума, широкий диапазон рабочих частот и т.д.), минимум необходимых внешних компонентов и небольшая стоимость

Основные характеристики TDA7294:

Типовое Максимум Единицы Напряжение питания ±10 ±40 В Диапазон воспроизводимых частот сигнал 3db
Выходная мощность 1Вт 20-20000 Гц Долговременная выходная мощность (RMS) коэф-т гармоник 0,5%:
Uп = ± 35 В, Rн = 8 Ом
Uп = ± 31 В, Rн = 6 Ом
Uп = ± 27 В, Rн = 4 Ом 60
60
60 70
70
70 Вт Пиковая музыкальная выходная мощность (RMS), длительность 1 сек. коэф-т гармоник 10%:
Uп = ± 38 В, Rн = 8 Ом
Uп = ± 33 В, Rн = 6 Ом
Uп = ± 29 В, Rн = 4 Ом 100
100
100 Вт Общие гармонические искажения Po = 5Вт; 1кГц
Po = 0,1-50Вт; 20-20000Гц 0,005 0,1 % Uп = ± 27 В, Rн = 4 Ом:
Po = 5Вт; 1кГц
Po = 0,1-50Вт; 20-20000Гц 0,01

0,1

%

Температура срабатывания защиты 145 0 C Ток в режиме покоя 20 30 60 мА Входное сопротивление 100 кОм Коэффициент усиления по напряжению 24 30 40 дБ Пиковое значение выходного тока 10 А Рабочий диапазон температур 0 70 0 C Термосопротивление корпуса 1,5 0 C/Вт

Схем включения этой микросхемы достаточно много, рассмотрю самую простую:

Позиция Наименование Тип Количество
С1 0,47 мкФ К73-17 1
С2, С4, С5, С10 22 мкФ х 50 B К50-35 4
С3 100 пФ 1
C6, С7 220 мкФ х 50 B К50-35 2
C8, С9 0,1 мкФ К73-17 2
DA1 TDA7294 1
R1 680 Ом МЛТ-0,25 1
R2…R4 22 кОм МЛТ-0,25 3
R5 10 кОм МЛТ-0,25 1
R6 47 кОм МЛТ-0,25 1
R7 15 кОм МЛТ-0,25 1

Микросхему необходимо установить на радиатор площадью >600 см 2 . Будьте внимательны, на корпусе микросхемы находится не общий, а минус питания! При установке микросхемы на радиатор лучше использовать термопасту. Желательно проложить между микросхемой и радиатором диэлектрик (слюду, например). В первый раз я не придал этому значения, подумал, а с какого такого перепугу я буду замыкать радиатор на корпус, но в процессе отладки конструкции, нечаянно упавший со стола пинцет замкнул как раз радиатор на корпус. Взрыв был классным! Микросхемы просто разнесло на куски! В общем отделался лёгким испугом и 10$ :). На плате с усилителем желательно также поставить на питание мощные электролиты 10000мк х 50в, дабы при пиках мощности провода от блока питания не давали провалы напряжения. Вообще, чем больше ёмкость конденсаторов на питании – тем лучше, как говорится "кашу маслом не испортишь". Конденсатор C3 можно убрать (или не ставить), я так и сделал. Как выяснилось, именно из-за него, при включении перед усилителем регулятора громкости (простого переменного резистора) получалась RC цепочка, которая при увеличении громкости косила высокие частоты, а вообще он нужен чтобы предотвращать возбуждение усилителя при подаче на вход ультразвука. Вместо C6, C7 я поставил на плате 10000мк х 50в, С8, С9 можно ставить любого близкого номинала – это фильтры питания, они могут стоять в блоке питания, а можно их припаять навесным монтажом, что я и сделал.

Я лично не очень люблю использовать готовые платы, по одной простой причине – трудно найти точно такие же по размеру элементы. Но в усилителе разводка может сильно влиять на качество звука, поэтому Вам решать какую плату выбрать. Поскольку я собирал усилитель сразу на 5-6 каналов, соответственно плата сразу на 3 канала:

В векторном формате (Corel Draw 12)
Блок питания усилителя, фильтр НЧ и др.

Почему-то, блок питания усилителя вызывает много вопросов. На самом деле, как раз тут-то, всё достаточно просто. Трансформатор, диодный мост и конденсаторы – это основные элементы блока питания. Этого достаточно для сборки самого простого блока питания.

Читайте также:  Зарядное устройство для автомобильного аккумулятора калибр

Для питания усилителя мощности стабилизация напряжения неважна, а важны ёмкости конденсаторов по питанию, чем больше – тем лучше. Важна также толщина проводов от блока питания до усилителя.

Мой блок питания реализован по следующеё схеме:

Питание +-15В предназначено для питания операционных усилителей в предварительных каскадах усилителя. Можно обойтись без дополнительных обмоток и диодных мостов, запитав модуль стабилизации от 40В, но стабилизатору придётся гасить очень большой перепад напряжения, что приведёт к значительному нагреву микросхем стабилизаторов. Микросхемы стабилизаторов 7805/7905 – импортные аналоги наших КРЕН.

Возможны вариации блоков А1 и А2:

Блок A1 – фильтр для подавления помех питания.

Блок А2 – блок стабилизированных напряжений +-15В. Первый альтернативный вариант – простой в реализации, для питания слаботочных источников, второй – качественный стабилизатор, но требует точного подбора комплектующих (резисторов), иначе получите перекос плеч "+" и "-", что даст потом перекос нуля на операционных усилителях.

Трансформатор блока питания для стерео усилителя на 100Ват должен быть примерно 200Ват. Поскольку я делал усилитель на 5 каналов, мне понадобился трансформатор помощнее. Но мне не надо было выкачивать все 100Ват, да и все каналы не могут одновременно отбирать мощность. Мне попался на рынке трансформатор TESLA (ниже на фото) ват эдак на 250 – 4 обмотки проводом 1,5мм по 17В и 4 обмотки по 6,3В. Соединив их последовательно я получил нужные напряжения, правда пришлось немного отмотать две обмотки на 17В, дабы получить суммарное напряжение двух обмоток

27-30В, поскольку обмотки были сверху – труда особого это не составило.

Отличная вещь – тороидальный трансформатор, такие используются для питания галогенок в светильниках, на рынках и магазинах их полно. Если конструктивно два таких трансформатора положить один на другой – излучение будет взаимно компенсироваться, что уменьшит наводки на элементы усилителя. Беда в том, что они имеют одну обмотку на 12В. У нас на радиорынке можно сделать такой трансформатор на заказ, но стоит это удовольствие будет прилично. В принципе, можно купить 2 трансформатора на 100-150Ват и перемотать вторичные обмотки, количество витков вторичной обмотки надо будет увеличить примерно в 2-2,4 раза.

Диоды / диодные мосты

Можно купить импортные диодные сборки с током 8-12А, это значительно упрощает конструкцию. Я использовал импульсные диоды КД 213, причём делал отдельно по мосту на каждое плечо, чтобы дать запас по току для диодов. При включении происходит заряд мощных конденсаторов, бросок тока при этом весьма существенен, при напряжении 40 В и емкости 10000 мкФ ток зарядки такого конденсатора составляет

10 А, соответственно по двум плечам 20А. При этом трансформатор и выпрямительные диоды кратковременно работают в режиме короткого замыкания. Пробой диодов по току даст неприятные последствия. Диоды были установлены на радиаторы, но я не обнаружил нагрева самих диодов – радиаторы были холодные. Для устранения помех по питанию, рекомендуют параллельно каждому диоду в мосте, устанавливать конденсатор

0,33мкф тип К73-17. Я правда, делать этого не стал. В цепи +-15В можно применить мосты типа КЦ405, на ток 1-2А.

Самое занудное занятие – корпус. В качестве корпуса я взял старый слим корпус от персонального компьютера. Пришлось его немного укоротить по глубине, хотя это было непросто. Считаю, что корпус получился удачным – блок питания находится в отдельном отсеке и можно ещё 3 канала усиления засунуть в корпус свободно.

После полевых испытаний, выяснилось, что нелишне поставить вентиляторы на обдув радиаторов, несмотря на то, что радиаторы имеют весьма внушительные размеры. Пришлось надырявить корпус снизу и сверху, для хорошей вентиляции. Вентиляторы подключены через 100Ом подстроечный резистор 1Вт на самые малые обороты (см. след рисунок).

Микросхемы стоят на слюде и термопасте, винты тоже надо изолировать. Радиаторы и плата прикручены к корпусу через диэлектрические стойки.

Очень хотелось этого не делать, только в надежде, что это всё временно.

После навешивания этих кишек, в колонках появился небольшой гул, видимо с "землёй" чё то стало не так. Мечтаю о том дне, когда я выкину это всё из усилителя и буду использовать его только как усилитель мощности.

Плата сумматора, фильтра НЧ, фазовращателя

Сзади получилось красивей, хоть ты его разверни попой вперёд. :)

TDA 7294 $25,00
конденсаторы (мощные элетролиты) $15,00
конденсаторы (остальные) $15,00
разъемы $8,00
кнопка включения $1,00
диоды $0,50
трансформатор $10,50
радиаторы с кулерами $40,00
резисторы $3,00
переменные резисторы + ручки $10,00
галетник $5,00
корпус $5,00
операционные усилители $4,00
стабилизаторы напряжения $2,00
Всего $144,00

Да, недешево что-то получилось. Скорее всего чего-то не учёл, просто покупалось, как всегда, всего гораздо больше, ведь пришлось ещё экспериментировать, да и сжёг я 2 микросхемы и взорвал один мощный электролит (всего этого я не учитывал). Это расчёт усилителя на 5 каналов. Как видно очень недёшево получились радиаторы, я использовал недорогие, но массивные кулера для процессоров, на то время (полтора года назад) они были очень хороши для охлаждения процессоров. Если учесть, что ресивер начального уровня можно купить за 240$, то можно и задуматься – а надо ли Вам это :), правда там стоит усилитель более низкого качества. Усилители такого класса стоят порядка 500$.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *