Меню Рубрики

Дифференциальная защита трансформатора принцип действия

Дифференциальная защита применяется в качестве основной защиты трансформаторов при повреждениях их обмоток, на вводах и ошиновке. Ввиду ее сравнительной сложности дифференциальная защита устанавливается лишь на одиночно работающих трансформаторах 6300 кВА и выше, на параллельно работающих трансформаторах мощностью 4000 кВА и выше и на трансформаторах мощностью 1000 кВА и выше, если токовая отсечка не обеспечивает защитное действие, а максимальная токовая защита имеет выдержку времени более 1 с.

Дифференциальная защита основана на принципе сравнения величин токов в начале и в конце защищаемого участка, например и начале и конце обмоток силового трансформатора, генератора и т. п. В частности, участок между трансформаторами тока, установленными на высшей и низшей сторонах силового трансформатора, считается защищаемой зоной.

Действие дифференциальной защиты поясняется рис.1. С обеих сторон трансформатора устанавливаются трансформаторы тока TT1 и ТТ2, вторичные обмотки которых включены последовательно. Параллельно им подключается токовое реле Т. Если характеристики трансформаторов тока будут одинаковы, то в нормальном режиме, а также при внешнем коротком замыкании токи во вторичных обмотках трансформаторов тока будут равны, разность их будет равна нулю, ток через обмотку токового реле Т протекать не будет, следовательно, защита действовать не будет.

При коротком замыкании в трансформаторе и в любой точке защищаемой зоны, например в обмотке трансформатора, по обмотке реле Т будет протекать ток, и если его величина будет равна току срабатывания реле или больше его, то реле сработает и через соответствующие вспомогательные приборы произведет двустороннее отключение поврежденного участка. Эта система будет действовать при междуфазных и межвитковых замыканиях.

Рис. 1. Дифференциальная защита трансформатора: а — токораспределение при нормальном режиме, б — то же при коротком замыкании в трансформаторе

Дифференциальная защита обладает высокой чувствительностью и является быстродействующей, так как для нее не требуется выдержки времени, она может выполняться с мгновенным действием, что и является ее главным положительным свойством. Однако она не обеспечивает защиты при внешних коротких замыканиях и может вызывать ложные отключения при обрыве в соединительных проводах вторичной цепи.

Рис. 2. Дифференциальная защита двух параллельно работающих трансформаторов

Принцип действия дифференциальной защиты построен на применении первого закона Киргофа. Защищаемый объект принимается за узел, ток фиксируется полностью на всех ветвях, соединяющих объект с внешней электрической сетью. При повреждении на отходящей ветви, сумма токов, входящих и отходящих из узла, равна нулю.

При повреждении объекта, в случае КЗ, сумма токов в ветвях будет равна токам короткого замыкания.

Дифференциальная токовая защита трансформатора отличается от дифференциальной защиты высоковольтных линий и генераторов наличием неравенства первичных токов разных обмоток трансформаторов и несовпадением по фазе.

Дифференциальная защита трансформаторов применяется для предотвращения аварийных и ненормальных режимов работы при возникновении короткого замыкания между фазами, межвитковых КЗ и замыкания одной или более фаз на землю. Дифзащита применяется как основный вид автоматического отключения для мощных трансформаторов и для трансформаторов меньшей мощности, в случае если другие виды защиты не обеспечивают требуемого быстродействия.

Читайте также:  Osgard balans 34974 отзывы

Как работает дифзащита трансформатора

Дифференциальная защита работает на сравнении величин токов в начале и в конце защищаемого участка, например и начале и конце обмоток силового трансформатора, генератора и т. п. В частности, участок между трансформаторами тока, установленными на высшей и низшей сторонах силового трансформатора, считается защищаемой зоной.

Рис 1. Дифференциальная защита трансформатора: а — токораспределение при нормальном режиме, б — то же при коротком замыкании в трансформаторе

Действия при срабатывании дифференциальной защиты трансформатора поясняется рис.1.

С обеих сторон трансформатора устанавливаются трансформаторы тока TT1 и ТТ2, вторичные обмотки которых включены последовательно. Параллельно им подключается токовое реле Т. Если характеристики трансформаторов тока будут одинаковы, то в нормальном режиме, а также при внешнем коротком замыкании токи во вторичных обмотках трансформаторов тока будут равны, разность их будет равна нулю, ток через обмотку токового реле Т протекать не будет, следовательно, защита действовать не будет.

При коротком замыкании в трансформаторе и в любой точке защищаемой зоны, например в обмотке трансформатора, по обмотке реле Т будет протекать ток, и если его величина будет равна току срабатывания реле или больше его, то реле сработает и через соответствующие вспомогательные приборы произведет двустороннее отключение поврежденного участка. Эта система будет действовать при междуфазных и межвитковых замыканиях.

Дифференциальная защита обладает высокой чувствительностью и является быстродействующей, так как для нее не требуется выдержки времени, она может выполняться с мгновенным действием, что и является ее главным положительным свойством. Однако она не обеспечивает защиты при внешних коротких замыканиях и может вызывать ложные отключения при обрыве в соединительных проводах вторичной цепи.

Рис. 2. Дифференциальная защита двух параллельно работающих трансформаторов

Зона действия дифференциальной защиты трансформатора (ДЗТ) ограничивается местом установки трансформаторов тока, и включает в себя ошиновку СН, НН и присоединение ТСН, включённого на шинный мост НН.

Ввиду её сравнительной сложности, дифференциальная защита устанавливается в следующих случаях:

  • на одиночно работающих трансформаторах (автотрансформаторах) мощностью 6300 кВА и выше;
  • на параллельно работающих трансформаторах (автотрансформаторах) мощностью 4000 кВА и выше;
  • на трансформаторах мощностью 1000 кВА и выше, если токовая отсечка не обеспечивает необходимой чувствительности при КЗ на выводах высшего напряжения ( kч

Дифференциальная защита, выполненная на принципе сравнения токов на входе и выходах, применяется в качестве основной быстродействующей защиты трансформаторов и автотрансформаторов. Защита абсолютно селективна, реагирует на повреждения в обмотках, на выводах и в соединениях с выключателями, и действует на отключение трансформатора со всех сторон без выдержки времени. Зона действия дифференциальной защиты трансформатора (ДЗТ) ограничивается местом установки трансформаторов тока, и включает в себя ошиновку СН, НН и присоединение ТСН, включенного на шинный мост НН. Ввиду ее сравнительной сложности, дифференциальная защита устанавливается в следующих случаях (Л1):

Читайте также:  Единица электрического напряжения это

на одиночно работающих трансформаторах (автотрансформаторах) мощностью 6300 кВА и выше;

на параллельно работающих трансформаторах (автотрансформаторах) мощностью 4000 кВА и выше;

– на трансформаторах мощностью 1000 кВА и выше, если токовая отсечка не обеспечивает необходимой чувствительности при КЗ на выводах высшего напряжения ч

Для того чтобы дифференциальная защита не подействовала от тока небаланса, ее ток срабатывания должен быть больше этого тока, т. е.

При КЗ в трансформаторе, или любом другом месте между ТТ, направление токов III и I2 изменится на противоположное, как показано на рис. 8.3, б. При этом ток в реле станет равным

Таким образом, при КЗ в зоне дифференциальной защиты в реле проходит полный ток КЗ, деленный на коэффициент трансформации трансформаторов тока. Под влиянием этого тока защита срабатывает и производит отключение поврежденного трансформатора.

Особенности, влияющие на выполнение дифференциальной защиты трансформаторов:

– Наличие намагничивающего тока, проходящего только со стороны источника питания

Даже в том случае, когда трансформатор имеет коэффициент трансформации, равный еди­нице, и одинаковое соединение обмоток, ток со стороны источника питания больше тока со стороны нагрузки на значение намагничивающего тока. Намагничивающий ток в нормальном режиме составляет примерно 1÷5% номинального тока трансформатора и поэтому вызывает лишь некоторое увеличение тока небаланса. Иные явления происходят при включении холостого трансформатора под напряжение, или при восстановлении напряжения после отключения КЗ.

В этих случаях в обмотке трансформатора со стороны источника питания возникает бросок намагничивающего тока, который в первый момент времени в 5÷8 раз превышает но­минальный ток трансформатора, но быстро, в течение времени менее 1 сек, затухает до значения порядка 5-10% номинального тока.

Неравенство вторичных токов и разнотипность трансформаторов тока

Поскольку у трансформаторов токи со стороны обмоток высшего, среднего и низшего напряжений не равны, трансформаторы тока, выбираемые по номинальным токам обмоток, имеют разные коэффициенты трансформации и различное конструктивное выполнение. Вследствие этого они имеют различные характеристики и погрешности.

Номинальные токи обмоток трансформаторов, как правило, не совпадают со шкалой номинальных токов ТТ. Поэтому при выборе ТТ принимается трансформатор тока, номинальный ток которого является ближайшим большим по отношению к номинальному току обмотки трансформатора. Иногда и этого сделать не удается, так как на выбор трансформаторов тока влияют и другие соображения. Таким образом, вследствие неравенства вторичных токов в плечах дифференциальной защиты в дифференциальном реле при номинальной нагрузке трансформатора проходит ток небаланса, равный:

Читайте также:  Заместитель директора департамента развития электроэнергетики

Поэтому для снижения тока небаланса, вызванного неравенством вторичных токов ТТ дифференциальной защиты, производится выравнивание этих токов путем включения специальных промежуточных автотрансформаторов тока, или путем использования выравнивающих обмоток дифференциальных реле. В цифровых реле такое выравнивание производится ма­тематическим путем.

Неодинаковые схемы соединения обмоток трансформаторов

При неодинаковых схемах соединения обмоток, например Y/Δ, токи со стороны обмотки, соединенной в звезду, и токи со стороны обмотки, соединенной в треугольник, оказываются сдвинутыми относительно друг друга на некоторый угол, который зависит от схемы соединения обмоток. Для обычно применяемой группы Y/Δ -11 вторичный ток опережает первичный на угол 30°. Угловой сдвиг токов создает небаланс в реле дифференциальной защиты, который нельзя компенсировать подбором витков. Компенсация углового сдвига производится путем специального соединением вторичных обмоток трансформаторов тока. Для этого на стороне звезды трансформаторы тока соединяются в треугольник, а на стороне треугольника – в звезду (см. рис. 8.4).

При таком соединении вторичных обмоток ТТ, как показано на рис. 8.4, в трансформаторах тока ТА1, вторичные обмотки которых соединены в треугольник, создается сдвиг токов на такой же угол, как и в соединенной в треугольник обмотке НН трансформатора, что и обеспечивает совпадение фаз вторичных токов.

Современные цифровые защиты (фирм ABB, SIEMENS, ALSTOM, GE) получают разность фазных токов математическим путем. У таких защит трансформаторы тока со всех сторон соединяются в звезду, а группа соединений трансформатора и полярность ТТ вводится в реле в виде уставки. Соединение в звезду выгоднее в части величины нагрузки на трансформаторы тока (при соединении трансформаторов тока в треугольник нагрузка на трансформаторы тока вырастает в 3 раза).

Рис. 8.4 Прохождение токов в схеме диф. защиты трансформатора с соединением обмоток Y/Δ

Соединение трансформаторов тока в треугольник на стороне трансформатора, где первичные обмотки соединены в звезду, имеет и преимущество. Если нейтраль трансформатора заземлена, то при замыкании на землю протекает ток от заземленной нейтрали к месту КЗ. При установке трансформаторов тока только на выводах и схеме соединения трансформаторов тока – «звезда» протекает несбалансированный ток нулевой последовательности, который при схеме соединения ТТ – «треугольник» замыкается внутри треугольника и в реле не попадает. Таким образом, состояние нейтрали соединенной в звезду обмотки трансформатора не влия­ет на работу дифзащиты. Цифровые защиты исключают влияние тока нулевой последовательности математическим путем, поэтому, трансформаторы тока можно соединить в звезду.

Дата добавления: 2015-05-05 ; просмотров: 818 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *