Меню Рубрики

Для чего нужен резистор на светодиоде

Содержание

Вот тут я обещал рассказать о том, как можно рассчитать номинал резистора для того, чтобы бортовая сеть вашего автомобиля не сожгла светодиоды, которые вы к ней подключите.
Для начала определимся с терминологией (люди, знакомые с электроникой, могут перейти к следующему пункту).

Падение напряжения — напряжение U (измеряется в вольтах, V) — которое потребляет светодиод (да-да, совершенно нагло съедает его!).
Оно же — напряжение питания. Не путать с напряжением источника питания.
Рабочий ток — ток I (измеряется в амперах, А. мы будем измерять в миллиамперах — 1 мА = 0.001 А).
СопротивлениеR измеряется в омах — Ом. Именно в этих единицах измеряются резисторы (сопротивления).
Напряжение источника питания — в нашем случае напряжение бортовой сети автомобиля и равно примерно 12V при заглушенном двигателе и 14V при заведённом (при условии исправной работы генератора).

С терминологией вроде всё. Перейдём к теории.
Вот примерное падение напряжения для каждого из основных цветов светодиодов.

Красный — 1,6-2,03
Оранжевый — 2,03-2,1в
Жёлтый — 2,1-2,2в
Зелёный — 2,2-3,5в
Синий — 2,5-3,7в
Фиолетовый — 2,8-4в
Белый — 3-3,7в

Реальные значения могут немного колебаться в ту или иную сторону. О том, как точно выяснить сколько потребляет конкретный светодиод — ссылка ниже.
Разница связана с использованием в них разных материалов кристалла, что и даёт, собственно говоря, разную длину испускаемой волны, а равно и разный цвет.

Средний же рабочий ток для маломощных светодиодов составляет около 0.02А = 20мА.
В чём же, спросите вы, загвоздка? Всё ведь просто — подключил светодиод соблюдая полярность и он светит тебе.
Да, всё так, но светодиод – предмет тёмный, изучению не подлежит интересный.
Тогда как напряжения питания он забирает на себя ровно столько, сколько ему требуется, ток превышающий его рабочий ток, попросту сожжёт кристалл.

Давайте возьмём пример. Имеется светодиод оранжевого цвета, который, согласно приведённой выше таблице, имеет напряжение питания порядка 2,1V, и рабочий ток 20мА. Если мы обрушим на него всю мощь бортовой сети нашего автомобиля, то напряжение в цепи, в которую он включен, снизится на

2.1V, правда, избыточный ток тут же его сожжёт…
Как же быть, если нам, например, нужно установить светодиод для подсветки замка зажигания?
Всё просто – нужно лишить участок цепи, в которую включен светодиод, избыточного тока.

Как? – спросите вы. Всё просто. Был такой дядя, Георг Ом, который вывел известную любому старшекласснику формулу (закон Ома для участка цепи) – U=I*R (где U – напряжение, I – ток, R – сопротивление.)
Переворачиваем эту прекрасную формулу, получая R=U/I.
В нашем случае R – сопротивление (номинал резистора), которое нам потребуется; U – напряжение в участке цепи, I – рабочий ток нашего светодиода.
Vs – напряжение источника питания
Vl – напряжение питания светодиода
Таким образом R=(Vs-Vl)/I=(12-2.1)/0.02=9.9/0.02=495 Ом – номинал резистора, который необходимо включить в цепь, дабы напрямую подключить светодиод к бортовой сети при выключенном двигателе.
Для работы при включенном двигателе рассчитываем так же, только Vs берём уже 14В.
Настоятельно рекомендую производить расчёты для авто, беря за напряжение бортовой сети 14В, иначе ваши светодиоды достаточно быстро выйдут из строя.

Если взять номинал больше, например 550-600 Ом, то светодиод будет светить чуть менее ярко.
Если номинал будет меньше, то «свет твоей звезды будет коротким, хоть и очень ярким».

Достоверно узнать, сколько вольт потребляет конкретный светодиод, можно подключив его к источнику постоянного напряжения в 3-5 вольт, подсоединив последовательно вольтметр (можно использовать электронный мультиметр, включив его в соответствующий режим), после чего посчитать насколько снизилось напряжение в цепи. И исходя уже их этих, конкретных данных, рассчитать требуемый вам резистор. Подробнее об этом методе читайте здесь.

В конце хочу сказать вам, что настоятельно рекомендую использовать номинал резистора немного выше чем расчётный, что, несомненно, продлит жизнь светодиодам.
Для определения резистора по цветовой маркировке (а именно так обозначены все современные резисторы) рекомендую использовать этот онлайн-калькулятор.
www.chipdip.ru/info/rescalc

Спасибо, что читаете мой БЖ, мне очень приятно. Если остались вопросы — задавайте не стесняясь — всем отвечу.

Основным параметром, влияющим на долговечность светодиода, является электрический ток, величина которого строго нормируется для каждого типа LED-элемента. Одним из распространенных способов ограничения максимального тока является использование ограничительного резистора. Резистор для светодиода можно рассчитать без применения сложных вычислений на основании закона Ома, используя технические значения параметров диода и напряжение в цепи включения.

Особенности включения светодиода

Работая по одинаковому принципу с выпрямительными диодами, светоизлучающие элементы, тем не менее, имеют отличительные особенности. Наиболее важные из них:

  1. Крайне отрицательная чувствительность к напряжению обратной полярности. Светодиод, включенный в цепь с нарушением правильной полярности, выходит из строя практически мгновенно.
  2. Узкий диапазон допустимого рабочего тока через p-n переход.
  3. Зависимость сопротивления перехода от температуры, что свойственно большинству полупроводниковых элементов.

На последнем пункте следует остановиться подробнее, поскольку он является основным для расчета гасящего резистора. В документации на излучающие элементы указывается допустимый диапазон номинального тока, при котором они сохраняют работоспособность и обеспечивают заданные характеристики излучения. Занижение величины не является фатальным, но приводит к некоторому снижению яркости. Начиная с некоторого предельного значения, прохождение тока через переход прекращается, и свечение будет отсутствовать.

Превышение тока сначала приводит к увеличению яркости свечения, но срок службы при этом резко сокращается. Дальнейшее повышение приводит к выходу элемента из строя. Таким образом, подбор резистора для светодиода преследует цель ограничить максимально допустимый ток в наихудших условиях.

Читайте также:  В каких единицах измеряется электрическое сопротивление

Напряжение на полупроводниковом переходе ограничено физическими процессами на нем и находится в узком диапазоне около 1-2 В. Светоизлучающие диоды на 12 Вольт, часто устанавливаемые на автомобили, могут содержать цепочку последовательно соединенных элементов или ограничительную схему, включенную в конструкцию.

Зачем нужен резистор для светодиода

Использование ограничительных резисторов при включении светодиодов является пусть и не самым эффективным, зато самым простым и дешевым решением ограничить ток в допустимых пределах. Схемные решения, которые позволяют с высокой точностью стабилизировать ток в цепи излучателей достаточно сложны для повторения, а готовые имеют высокую стоимость.

Применение резисторов позволяет выполнять освещение и подсветку своими силами. Главное при этом – умение пользоваться измерительными приборами и минимальные навыки пайки. Грамотно рассчитанный ограничитель с учетом возможных допусков и колебаний температуры способен обеспечить нормальное функционирование светодиодов в течении всего заявленного срока службы при минимальных затратах.

Параллельное и последовательное включение светодиодов

С целью совмещения параметров цепей питания и характеристик светодиодов широко распространены последовательное и параллельное соединение нескольких элементов. У каждого типа соединений есть как достоинства, так и недостатки.

Параллельное включение

Достоинством такого соединения является использование всего одного ограничителя на всю цепь. Следует оговориться, что данное достоинство является единственным, поэтому параллельное соединение практически нигде не встречается, за исключением низкосортных промышленных изделий. Недостатки таковы:

  1. Мощность рассеивания на ограничительном элементе растет пропорционально количеству параллельно включенных светодиодов.
  2. Разброс параметров элементов приводит к неравномерности распределения токов.
  3. Перегорание одного из излучателей ведет к лавинообразному выходу из строя всех остальных ввиду увеличения падения напряжения на параллельно включенной группе.

Несколько увеличивает эксплуатационные свойства соединение, где ток через каждый излучающий элемент ограничивается отдельным резистором. Точнее, это является параллельным соединением отдельных цепей, состоящих из светодиодов с ограничительными резисторами. Основное достоинство – большая надежность, поскольку выход из строя одного или нескольких элементов никаким образом не отражается на работе остальных.

Недостатком является тот факт, что из-за разброса параметров светодиодов и технологического допуска на номинал сопротивлений яркость свечения отдельных элементов может сильно различаться. Такая схема содержит большое количество радиоэлементов.

Параллельное соединение с индивидуальными ограничителями находит применение в цепях с низким напряжением, начиная с минимального, ограниченного падением напряжения на p-n переходе.

Последовательное включение

Последовательное включение излучающих элементов получило самое широкое распространение, поскольку несомненным достоинством последовательной цепи является абсолютное равенство тока, проходящего через каждый элемент. Поскольку ток через единственный ограничительный резистор и через диод одинаков, то и рассеиваемая мощность будет минимальной.

Существенный недостаток – выход из строя хотя бы одного из элементов приведет к неработоспособности всей цепочки. Для последовательного соединения требуется повышенное напряжение, минимальное значение которого растет пропорционально количеству включенных элементов.

Смешанное включение

Использование большого количества излучателей возможно при выполнении смешанного соединения, когда используют несколько параллельно включенных цепочек, и последовательного соединения одного ограничительного резистора и нескольких светодиодов.

Перегорание одного из элементов приведет к неработоспособности только одной цепи, в которой установлен данный элемент. Остальные будут функционировать исправно.

Формулы расчета резистора

Расчет сопротивления резистора для светодиодов базируется на законе Ома. Исходными параметрами для того, как рассчитать резистор для светодиода, являются:

  • напряжение цепи;
  • рабочий ток светодиода;
  • падение напряжения на излучающем диоде (напряжение питания светодиода).

Величина сопротивления определяется из выражения:

где U – падение напряжения на резисторе, а I – прямой ток через светодиод.

Падение напряжения светодиода определяют из выражения:

где Uпит – напряжение цепи, а Uсв – паспортное падение напряжения на излучающем диоде.

Расчет светодиода для резистора дает значение сопротивления, которое не будет находиться в стандартном ряду значений. Брать нужно резистор с сопротивлением, ближайшим к вычисленному значению с большей стороны. Таким образом учитывается возможное увеличение напряжения. Лучше взять значение, следующее в ряду сопротивлений. Это несколько уменьшит ток через диод и снизит яркость свечения, но при этом нивелируется любое изменение величины питающего напряжения и сопротивления диода (например, при изменении температуры).

Перед тем как выбрать значение сопротивления, следует оценить возможное снижение тока и яркости по сравнению с заданным по формуле:

Если полученное значение составляет менее 5%, то нужно взять большее сопротивление, если от 5 до 10%, то можно ограничиться меньшим.

Не менее важный параметр, сказывающийся на надежности работы – рассеиваемая мощность токоограничительного элемента. Ток, проходящий через участок с сопротивлением, вызывает его нагрев. Для определения мощности, которая будет рассеиваться, используют формулу:

Используют ограничивающий резистор, чья допустимая мощность рассеивания будет превосходить расчетную величину.

Имеется светодиод с падением напряжения на нем 1.7 В с номинальным током 20 мА. Необходимо включить его в цепь с напряжением 12 В.

Падение напряжения на ограничительном резисторе составляет:

U = 12 – 1.7 = 10.3 В

R = 10.3/0.02 = 515 Ом.

Ближайшее большее значение в стандартном ряду составляет 560 Ом. При таком значении уменьшение тока по сравнению с заданным составляет чуть менее 10%, поэтому большее значение брать нет необходимости.

Рассеиваемая мощность в ваттах:

P = 10.3•10.3/560 = 0.19 Вт

Таким образом, для данной цепи можно использовать элемент с допустимой мощностью рассеивания 0.25 Вт.

Подключение светодиодной ленты

Светодиодные ленты выпускаются на различное напряжение питания. На ленте располагается цепь из последовательно включенных диодов. Количество диодов и сопротивление ограничительных резисторов зависят от напряжения питания ленты.

Читайте также:  Вскопать огород вручную цена за сотку

Наиболее распространенные типы светодиодных лент предназначены для подключения в цепь с напряжением 12 В. Использование для работы большего значения напряжения здесь также возможно. Для правильного расчета резисторов необходимо знать ток, идущий через единичный участок ленты.

Увеличение длины ленты вызывает пропорциональное увеличение тока, поскольку минимальные участки технологически соединены параллельно. Например, если минимальная длина отрезка составляет 50 см, то на ленту 5м из 10 таких отрезков придется возросший в 10 раз ток потребления.

Это вторая часть, посвященная доработке автомобильных светодиодных ламп.

В данной записи поговорим о так называемых резисторах-обманках.

Ряд автомобилей оборудован системой контроля исправности ламп, которая сигнализирует в случае перегорания штатных ламп накаливания, например, ламп стоп-сигналов, габаритов и т.д. В этом случае, на щитке приборов загорается соответствующий индикатор (фото 1):

Система контроля ламп ориентируется на ток, проходящий через лампу. Если нет тока через лампу, значит, она перегорела. Как известно, светодиоды потребляют намного меньший ток, чем лампы накаливания. Поэтому, при замене штатных ламп накаливания на светодиодные, система контроля может не увидеть светодиодную лампу и включит индикатор неисправности.

Чтобы обмануть систему контроля, производители светодиодных ламп устанавливают в свои изделия нагрузочные (балластные) резисторы-обманки, чтобы искусственно увеличить ток, потребляемый лампой. На рис. 2 показана схема простой светодиодной лампы без стабилизатора тока (драйвера), где R1-R3 — токоограничивающие резисторы в цепи питания светодиодов, а R0 — нагрузочный резистор-обманка. Нагрузочный резистор подключается параллельно контактам питания лампы и создает дополнительную нагрузку, обманывая систему контроля ламп.

Наличие резистора-обманки можно определить по надписи CANBUS на корпусе светодиодной лампы (фото 3). Однако, не все производители ламп наносят подобную маркировку, поэтому окончательный вывод о наличии обманки позволит сделать только изучение внутренностей лампы.

Рассмотрим типовую цилиндрическую светодиодную лампу типа C5W или C10W. Отпаиваем контактные колпачки. Под ними расположены токоограничивающие резисторы R1-R3 (фото 4). О них подробно рассказано в первой части.

С обратной стороны, как правило, находится резистор-обманка (фото 5, 6). Его сопротивление обычно не превышает 500 Ом. Так, на фото 6, сопротивление обманок двух разных ламп составляет 150 и 180 Ом соответственно.

На фото 7-9 показана бесцокольная светодиодная лампа T10 W5W с резистором-обманкой сопротивлением 470 Ом:

Казалось бы, все замечательно, резистор-обманка имитирует лампу накаливания, система контроля ламп не "ругается" на светодиодную лампу. Но такое техническое решение имеет и свои минусы.

Во-первых, обманка увеличивает ток потребления лампы, иначе систему контроля не обмануть. Так, при напряжении питания U=14 В и сопротивлении нагрузочного резистора, скажем, R = 200 Ом, дополнительный ток через резистор составит I= U/R = 14В / 200 Ом = 70 mA. В этом случае преимущество светодиодной лампы в плане низкого энергопотребления снижается.

Во-вторых, резистор-обманка сильно нагревается. Мощность, рассеиваемая на резисторе, рассчитывается по формуле P = U^2/R. При напряжении питания бортсети 14 В и сопротивлении резистора 200 Ом, на резисторе будет рассеиваться мощность P = 14В * 14В / 200 Ом = 0.98 Вт. В связи с небольшими габаритами светодиодных ламп, производители обычно устанавливают резисторы-обманки типоразмера SMD 2010 с максимальной рассеиваемой мощностью 0.75 Вт. В таком случае обманка работает с перегрузкой и греется как маленькая электроплитка.

Что с этим делать?

1. Если в автомобиле нет системы контроля исправности ламп, резистор-обманку можно просто удалить. Такая лампа будет потреблять значительно меньший ток и будет меньше нагреваться.

2. Если система контроля присутствует, то можно попытаться установить обманку с более высоким сопротивлением. Номинал резистора придется подбирать экспериментально, при каком наибольшем сопротивлении система контроля еще не срабатывает. В итоге получим меньший ток потребления и меньший нагрев лампы.

В-третьих, есть еще один существенный минус. Следует помнить, что обманка полностью дезинформирует систему контроля исправности ламп. Даже если светодиодная лампа перегорит, система контроля будет молчать, так как резистор-обманка по-прежнему будет имитировать лампу накаливания.

Для более мощных светодиодных ламп применяются внешние резисторы-обманки с большой рассеиваемой мощностью. Например, при замене ламп накаливания типа P21W номинальной мощностью 21 Вт на светодиодные (обычно устанавливаются в указателях поворота), применяются резисторы-обманки с рассеиваемой мощностью 25-50 Вт (фото 10). Подробнее об установке таких обманок см. мою запись Установка светодиодных ламп в сигналы поворота фар.

Бывает, что в конструкции светодиодной лампы резистор-обманка не предусмотрен (фото 11-13), или же из экономии просто не установлен (фото 14). В таком случае, при наличии системы контроля ламп, обманку придется устанавливать самостоятельно.

Отсутствие резистора-обманки в конструкции светодиодной лампы может привести к такому эффекту, как остаточное (паразитное) свечение светодиодов.

Проявляется это в том, что даже при отключении питания, лампа продолжает тускло светиться (фото 15):

Причина в том, что в современных автомобилях для коммутации ламп часто используются не механические выключатели, а электронные ключи, небольшой ток через которые остается даже после отключения нагрузки. Наличие остаточного свечения вызвано тем, что даже в выключенном состоянии, через лампу в этом случае будет протекать небольшой ток. Штатная лампа накаливания от такого тока светиться не будет, а светодиодам бывает достаточно.

Кроме того, паразитное свечение возникает не только по вине электронных ключей в цепи. Так, контроллер исправности электрических цепей в авто может короткими импульсами "просматривать" все потребители, вызывая мигание светодиодов в лампах. Так же, банальная грязь и влага в контактах разъемов, блоке предохранителей или светильнике может образовать шунты — мостики перетока электроэнергии. Даже грязный концевик двери может являться причиной свечения светодиодной лампы.

Читайте также:  Stout электрический котел 12 квт отзывы

Резистор-обманка решает эту проблему. Так как этот резистор подключается параллельно светодиодам, то, при отключении питания, паразитные или контрольные токи будут протекать в основном через обманку, и светодиоды уже не будут светиться. На практике, для устранения остаточного свечения, достаточно резистора сопротивлением 1.0-2.2 кОм.

Поэтому, если в автомобиле нет системы контроля ламп, то целесообразно заменить заводские резисторы-обманки, которые имеют сопротивление 100-500 Ом, на резисторы сопротивлением 1.0-2.2 кОм (фото 16).

Если же заводские обманки отсутствуют, и при этом наблюдается остаточное свечение светодиодов, можно впаять такие обманки самостоятельно (фото 17, 18).

Некоторые наши коллеги идут еще дальше, и вместо доработки светодиодных ламп, впаивают обманки прямо в светильник, параллельно контактам лампы (фото 19, 20). Лично я не сторонник такого решения, но пусть каждый выберет свой вариант.

Итак, подведем итоги.

1. Часть светодиодных ламп имеет в своей конструкции резисторы-обманки, предназначенные для "обмана" штатной системы контроля исправности ламп. Часто такие лампы имеют на корпусе надпись CANBUS.
2. У обманок есть минусы — они увеличивают общий ток потребления светодиодной лампы и к тому же сильно нагреваются.
3. Поэтому, при наличии системы контроля ламп, для снижения потребляемого тока и уменьшения нагрева, целесообразно подобрать обманки с более высоким сопротивлением, при котором систем контроля еще не срабатывает.
4. При отсутствии в автомобиле системы контроля ламп, обманки целесообразно вообще удалить.
5. В то же время, обманки устраняют эффект остаточного (паразитного) свечения светодиодов при отключении питания, так как гасят паразитные токи в цепи лампы.
6. При отсутствии системы контроля ламп, но при наличии остаточного свечения, компромиссным решением будет замена заводских обманок на резисторы с более высоким сопротивлением, порядка 1.0-2.2 кОм.
7. При отсутствии заводских обманок в конструкции светодиодных ламп, эффект остаточного свечения можно устранить установкой дополнительных обманок либо в лампу, либо непосредственно в светильник.
8. Еще один минус — обманка полностью дезинформирует систему контроля исправности ламп. Даже если светодиодная лампа перегорит, система контроля будет молчать, так как резистор-обманка по-прежнему будет имитировать лампу накаливания.

Надеюсь, данный материал был для вас интересным и полезным.

Всем хорошего дня, до связи!

Recommendations

Comments 99

Хорошая статья. Подскажите, что бы не ошибиться. Я ставлю задние светодиодные фонари на грузовик 24в. Стандартные лампы 24в 21вт и 24в 10вт. Какие резисторы мне нужны? Параметры фонаря на фото

Здравствуйте. Уточните:
1. Где какие штатные лампы используются? Какой мощности лампы установлены в стоп, габарит, поворотник? Я предполагаю, что 21Вт в стоп, 21Вт в поворотник и 10Вт в габарит.
2. Для какой цели планируются резисторы а) чтобы не было быстрого мигания поворотниками или б) для обмана штатной системы контроля исправности ламп?
Просто для разных целей и расчеты резистора могут быть разные.

Здравствуйте. По первому пункту все так. Резисторы нужны для нормального мигания и для обмана штатной системы контроля.

По моим расчетам, на каждый фонарь нужно три резистора, по одному на каждую лампу:
1. Поворотник: 33 Ом/25-50Вт. Если есть возможность, чтобы резистор меньше грелся, лучше поэкспериментировать, увеличивая сопротивление до 43, 47, 51, 62, 75 Ом и т. д. Чем больше сопротивление, тем меньше будет греться резистор, но лампа может начать быстро мигать. Резистор лучше выбрать максимально большого сопротивления, при котором еще мигает с нормальной частотой.
2. Стоп: 33 Ом/50Вт. Здесь мощность резистора выше, т.к. стоп работает более продолжительное время и резистор будет сильнее греться. Но точно так же есть смысл поэкспериментировать, повышая сопротивление до тех пор, пока не начнет ругаться система контроля.
3. Габарит: 62 Ом/25Вт. Аналогично, поэкспериментировать с системой контроля, повышая сопротивление до 75, 82, 91, 100 Ом и т.д. Чем больше, тем лучше, но может начать ругаться система контроля.
Примечания:
а) Расчетные цифры гарантируют результат, так как полностью имитируют штатные лампы. Но резисторы будут греться, поэтому желательно максимально увеличить сопротивление от расчетного, чтобы снизить нагрев. На всех автомобилях системы контроля могут отличаться, поэтому не могу точно сказать, до какой величины можно увеличивать, нужен подбор.
б) Чтобы не покупать много резисторов для подбора (мощные резисторы довольно дорогие), я бы для начала взял по паре разных, например, для поворотника и стопа 47 Ом и 75 Ом, для габаритов 82 и 100 Ом, в итоге в наличии будут 47, 75, 82, 100 Ом, из них уже можно подбирать.
в) Если подойдет сопротивление больше расчетного, скажем, в 2 раза, то можно понизить в 2 раза расчетную мощность резистора, это будет дешевле. Например, если в поворотник подойдет резистор 75-100 Ом, его мощность можно снизить до 10Вт.
г) Резисторы устанавливаются параллельно лампе. Для лучшего охлаждения, лучше закрепить их на металле кузова.
д) При установке резисторов мы по сути отключаем систему контроля, т.е. уже не узнаем, когда перегорит светодиодная лампа.
Будут вопросы — пишите мне в личные сообщения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *