Меню Рубрики

Генератор ван де граафа своими руками

Содержание

Автор канала физики «Atom Duba» собрал самодельный мощный генератор Ван де Граафа, позволяющий получать высокие напряжения до 100 000 вольт.

Это генератор высокого напряжения, механизм работы его базируется на электризации движущейся диэлектрической ленты. Впервые был создан в 1929 г. в США физиком Робертом Ван де Граафом и давал разность потенциалов до 80 Квольт. В 1931 он же разработал устройства, вырабатывающее 1 млн, а два года спустя – 7 млн вольт.

Известно, что при трении разных материалов друг об друга можно получить электрический заряд, который притягивать всякие мелкие бумажки, пыль и даже отклонять струю воды. Например, используем канализационную ПВХ-трубу и носок, работает не хуже знаменитой эбонитовой палочки. Любое вещество состоит из положительно заряженных ядер атомов и отрицательно заряженных электронов, которые вращаются вокруг них. Обычно в веществе положительного и отрицательного заряда поровну, поэтому суммарный равен нулю, такое тело не заряжено. Но когда носок касается трубы, то электроны переходят с носка на нее, потому что электроны лучше притягиваются к её молекулам.

Трение – это способ привести в контакт как можно больше молекул, поэтому во время эксперимента лучше еще нажимать на носок силой. Но не все осознают, что таким простым способом достигается напряжение в 1000 В, чтобы убедиться в этом, рекомендовано проделать эксперимент в абсолютной темноте, например, заперевшись в комнате без окон. И пронаблюдать вспышки разрядов, возникающие при трении носка об трубу.


Генератор Ван де Граафа тоже получает заряд за счет соприкосновения двух материалов друг с другом, однако он умеет получать куда большее напряжение. При устроен он довольно просто. В нижней части генератора закреплен двигатель, он нужен, чтобы вращать специальную ленту, на оси двигателя нужно закрепить что-то, что при соприкосновении заряжать ленту. Перепробовали целую кучу материалов надевать на ось, а также несколько вариантов лент. В качестве ленты лучше всего работал медицинский бинт Мартенса, а на ось в итоге надели кусочки все той же ПВХ-трубы, которая хорошо притягивает электроны, заряжаясь отрицательно. А положительно зарядившаяся лента, вращаясь, несет свой заряд наверх, и он накапливаться на металлическом шаре все больше и больше. Если хочется, чтобы шар стал не плюсом, а минусом, просто просовываем свои пальцы в трубу, кожа при трении отдает электроны. Напряжение на шаре накапливается действительно большое, судя по размеру пробивающих молний 100000 В набирается. Крутые генераторы, созданные по технологии Ван де Граафа, умеют получать миллионы вольт и используют в физике, чтобы ускорять частицы до больших энергий.

Почему лента всегда только приносит заряд на шар, и никогда его оттуда не уносит? Чтобы ответить на вопрос, нужно разобраться в одном важном свойстве проводников, ведь шар в отличие от ленты специально сделан из металла, хорошо проводящего материала. Объяснение для обывателя, прошаренные чуваки сами прочитают про теорему Гаусса и экранировку.

Предположим, есть кусок металла, и внутрь него каким-то образом попал заряд, пусть это кучка отрицательных электронов, однако, если это металл, то не пройдет и доли секунды, как там уже не будет, потому что это кучка электронов, они все друг от друга отталкиваются. Быстро весь избыточный заряд окажется размазанным по внешней стенке металла очень-очень тонким слоем, т.е. всегда скапливается на внешней поверхности проводников. Поэтому лента и не может взять заряд с шара, внутри его просто нет. Это и есть основной принцип работы генератора изобретателя Ван де Граафа. Вся фишка в том, что подносим ленту изнутри шара, а не снаружи.

Читайте также:  140 Ампер сколько киловатт

Шар сделали из двух салатниц, купленных в Икея. Внутри втулка из велосипеда, на которой держится, свободно вращаясь, лента. Заряд с ленты на шар попадает либо через втулку, либо с помощью дополнительного провода, поднесенного максимально близко к ленте. В конце он разделен на множество мелких острых проводников. Дело в том, что через воздух на острие намного лучше стекает заряд. Половник, в который бьет молния, заземлен через корпус самодельного генератора.

На уроках физики, чтобы показать действие, совершаемое статическим электричеством, демонстрируют генератор Ван де Граафа. Необычное устройство, пуская в разные стороны миниатюрные молнии, приводит в восторг учеников. Но мало кто знает, что генератор также использовался для опытов в сфере ядерной физики.

История создания

Американский физик Роберт Ван де Грааф (1901-1967), работавший в Принстонском университете, вошел в историю как создатель электростатического ускорителя элементарных частиц.

Первое описание генератора Ван де Граафа было сделано в 1929 году, а через два года он создал высоковольтный ускоритель, который мог выдавать электрическое напряжение 1 МВ. В 1935 году усовершенствованная конструкция вырабатывала уже 7 мегавольт.

Генератор Ван де Граафа впоследствии стал основой для современной разновидности линейного ускорителя, названного пеллетроном. Разница между ними заключалась в способе передачи заряженных частиц. Если у генератора они передавались при помощи диэлектрической ленты, то у пеллетрона – металлической цепью.

Принцип действия

Конструкция генератора позволяет делать его как в горизонтальном исполнении, так и в вертикальном. Основной его частью является большая металлическая сфера, на поверхности которой происходит накопление заряженных частиц. Внутри корпуса из изолированного материала находятся два ролика, соединенных между собой диэлектрической лентой. Изначально она была выполнена из шелка и резины, а впоследствии заменена цепью.

Нижний ролик имеет заземление и соединение с малой сферой, также у него есть привод для вращения. Верхний ролик через металлическую щетку соединен с большой сферой.

По мере вращения нижнего ролика происходит ионизация воздуха с последующим переносом заряженных частиц к верхнему ролику. Через металлическую щетку поток ионов переносится на поверхность большой сферы, где накапливается в виде электростатического заряда.

Мощность генератора Ван де Граафа ограничена коронным разрядом, создающим светящуюся оболочку вокруг заряженного электрода.

Где применяется генератор

Изначально устройство применялось для разгона заряженных частиц, но со временем появились более совершенные ускорители, и необходимость в нем отпала. В настоящее время опыты с генератором Ван де Граафа ставятся в основном для моделирования процессов, происходящих во время грозовых разрядов.

В современных школах это устройство является стандартным оборудованием физических кабинетов. На территории бывшего СССР генератор не выпускался. В школах для опытов использовалась электрофорная машина Вимшурста, которая была впоследствии названа «Разряд».

Способность генератора издавать разряды используется в различных шоу-программах и цирковых трюках. Он может создавать поле, удерживающее в воздухе небольшие предметы, а мощный заряд позволяет работать электрическим приборам вдали от источника электричества.

Меры предосторожности

Как любое устройство, создающее высокое напряжение, генератора Ван де Граафа требует мер предосторожности при работе с ним. Разряду неважно, где возникать: между разнополярными электродами или между заряженным электродом и телом человека. Достаточно существенной разницы в потенциалах. Поэтому при работе с генератором человек должен находиться на резиновом коврике, чтобы его потенциал оставался нейтральным по отношению к накопленному заряду.

Читайте также:  Lc technic бетоносмеситель лабораторный

Если человек будет находиться на полу, тем более на влажном, то он станет отличным проводником для передачи заряженных частиц земле, и через его тело пройдет разряд величиной в несколько тысяч, а может, и миллионов вольт. Единственное, что может позволить человеку остаться в живых — это малая сила тока.

Люди, имеющие кардиостимуляторы, не должны приближаться к генератору. Электронные приспособления, такие как часы, сотовые телефоны, могут давать сбой в работе. Поэтому перед началом экспериментов нужно оставить их в стороне.

Перед началом работы

Элементы генератора, такие как ленты, шкивы, сфера, притягивают к себе пыль, как магнит. Перед началом работы нужно очистить механизмы. Для этого нужно снять большую сферу и влажной тряпочкой протереть детали устройства. Если накопленный заряд не позволяет избавиться от пыли, то можно применить спрей-антистатик для волос.

Самое важное, что нужно сделать до начала вращения генератора — это убедиться в заземлении малого электрода. Иначе разряд будет бить в объект, обладающий большей массой, то есть в человека.

Из чего собрать генератор в домашних условиях

Теперь, когда принцип действия генератора Ван де Граафа известен, можно самостоятельно собрать действующую модель для домашних экспериментов. После небольших испытаний выяснилось, что для получения заряженных частиц лучше всего подходит труба ПВХ для водопровода. Если ее потереть синтетическим материалом, то появившийся в ней заряд позволят притягивать мелкие бумажки, отклонять струю воды, падающей вниз. Поэтому ПВХ-труба станет источником заряженных частиц.

А что будет переносить электроны на сферу генератора? Опыты показали, что лучше всего подходит медицинский бинт Мартенса. Он состоит из полиэстера, латекса и хлопчатобумажной ткани.

Теперь, когда определились с основными рабочими частями, составляется полный список необходимых материалов:

  1. Большая металлическая сфера. Она изготавливается из двух крупных салатниц, продающихся в ближайшем гипермаркете.
  2. Труба ПВХ. Потребуется 2 отрезка разного диаметра. Первый станет корпусом генератора, а второй нужно подобрать таким образом, чтобы он плотно надевался на шкив, соединенный с приводом.
  3. Верхний шкив. Можно использовать любой подходящий предмет, на котором бы держалась лента, не соскакивая. Например, старую втулку от велосипедного колеса или большую пластиковую катушку с бортами.
  4. Отрезок медного многожильного провода. Из него будут изготовлены щетки, снимающие и передающие заряд.
  5. Маломощный электродвигатель. Потребуется для вращения нижнего шкива. Однако если есть желание, то привод можно сделать ручной.
  6. Металлические планки для опоры генератора, а также для фиксации шкивов на ПВХ трубе.
  7. Металлический половник. Будет выступать в роли малого электрода.

Сборка генератора Ван де Граафа своими руками

Когда все материалы подготовлены, можно приступить к изготовлению:

  1. Из металлических планок сделать прямоугольную основу для генератора. Ее нужно выполнить в форме квадрата. Размеры должны обеспечивать устойчивость конструкции. Также нужно предусмотреть крепление под электродвигатель.

Прототипы генератора Ван де Граафа на фото столетней давности мало отличаются от устройства, сделанного своими руками. Теперь, когда прибор полностью готов, можно приступать к опытам.

Процесс сборки генератора:

Шаг первый. Собираем корпус генератора
Корпус генератора состоит из ПВХ труб, в качестве основы используется деревянная подставка. Сперва нужно взять основание и приклеить к нему кусок пластиковой трубы длиной 5-7 см (диаметр используемых труб 3/4 дюйма). Далее на эту трубу надевается ПВХ сантехнический тройник. Благодаря такой конструкции устройство можно будет легко разобрать, если понадобится заменить резинку или провести какие-либо другие работы внутри.

Читайте также:  Беспроводная мышка intro как подключить

Теперь можно устанавливать двигатель, он вставляется в отверстие тройника и располагается горизонтально. Если окажется, что диаметр моторчика будет слишком маленьким, его нужно обмотать изолентой, он должен входить в корпус тройника с некоторым усилием. Чтобы вал двигателя мог взаимодействовать с резинкой, на него нужно надеть кусочек трубочки. Подойдет ампула гелиевой ручки или лучше всего мягкий резиновый кембрик от провода, это будет обеспечивать отличное сцепление с лентой.

После установки двигателя нужно взять дрель и просверлить напротив вала двигателя небольшое отверстие. Затем в него нужно вставить кусок многожильного провода, разлохмаченного на конце. Он будет снимать с ленты электрический заряд. Провод можно закрепить с помощью горячего клея или скотча. Теперь осталось только надеть на вал двигателя резинку и вытащить другой ее конец через верхнюю часть. После этого можно переходить к следующему этапу.

Шаг второй. Делаем вторую ось
Теперь нужно взять еще один кусок ПВХ трубы и отрезать от него кусок в 5-7 сантиметров, он будет вставляться в верхнюю часть тройника. Длина этого куска трубы должна быть такой, чтобы резинка не была слишком сильно натянута, иначе она не сможет вращаться. Но лента и не должна сильно провисать. После того как будет достигнута определенная длина, резинку можно временно зафиксировать вверху гвоздем.

После установки стаканчика в верхней части трубы нужно просверлить три отверстия. Два нужно для того, чтобы вставить второй вал, а третье для установки контакта. В качестве вала используется гвоздь, на который надевается кусочек стеклянной трубочки. При вращении она имеет самое маленькое трение. Такую трубочку автор сделал из стеклянного предохранителя. Чтобы снять металлические колпачки, их нужно сперва нагреть паяльником, а потом осторожно стащить плоскогубцами.

Ну а далее останется подключить вторую щетку, как и в первом случае нужно расправить щетину на проводе и сделать так, чтобы он находился от ленты на минимальном расстоянии, но не касался ее. Провод фиксируется скотчем или клеем.

Опять же, чтобы система проще разбиралась, можно сделать верхнюю часть съемной, используя муфту для пластиковой трубы. Как это сделать, можно увидеть на фото.

Шаг третий. Заключительный процесс сборки
На этом этапе конструкция будет собрана полностью. Сперва нужно зафиксировать стаканчик, для этого можно использовать горячий клей или специальный клей для пластика.

После этого можно устанавливать алюминиевую банку, для этого в верхней ее части нужно вырезать отверстие, подходящее по диаметру к стаканчику. Банка должна плотно сесть на него.

Благодаря закругленным краям, такая банка отлично подходит для работы с высоким напряжением, поскольку минимизируется «коронный разряд». Также нужно не забыть пропустить внутрь банки свободный конец провода от верхней щетки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *