Меню Рубрики

Lm317 схема включения для светодиодов

Содержание

Рассмотрим самый простой вариант изготовления светодиодного драйвера своими руками с минимальными затратами времени. Для расчёта стабилизатора тока на LM317 для светодиодов используем калькулятор, которому необходимо указать требуемую силу тока для LED диодов. Предварительно составьте схему включения светодиодов, учитывая максимальную мощность микросхемы и блока питания для светодиодов. Заранее поищите систему охлаждения для всей конструкции.

  • 1. Схема подключения
  • 2. Пример расчётов и сборки
  • 3. Основные электрические характеристики
  • 4. Импульсные драйверы

Калькулятор

Схема подключения

О различных способах питания светодиодов от 12 и 220 вольт прочитайте в статье «Как подключить светодиод«.

Для изготовления стабилизатора тока на LM317 с возможностью регулирования, вместо постоянного резистора поставить мощное переменное сопротивление. Номинал переменного сопротивления можно вычислить, указав калькулятору границы регулирования. Сопротивление может быть от 1 до 110Ом, это соответствует максимальному и минимальному. Но рекомендую отказаться от регулировки Ампер в нагрузке переменным сопротивлением. Правильно реализовать будет сложно и лишком большой будет нагрев.

Мощность постоянного резистора для стабилизатора тока по рассеиванию тепла должна быть с запасом, вычисляется по формуле:

  • I² * R = Pвт
    сила тока в квадрате умноженное на сопротивление резистора.

В качестве блока питания можно использовать трансформаторный или импульсный источник напряжения с полярным напряжением. В качестве выпрямителя лучше использовать классический диодный мост, после которого установлен конденсатор большой емкости.

Регулятор тока на LM317 LM317T работает по линейному принципу, поэтому может достаточно сильно нагреваться из-за невысокого КПД. Наличие приличного радиатора обязательно. Если контроль нагрева показал низкую температуру нагрева, то его можно уменьшить.

Если количество Ампер требуется более 1,5А, то в стандартную схему надо добавить пару элементов. Можно получить до 10А, установив мощный транзистор KT825A и резистор на 10ом.

Этот вариант подходит для тех, у кого под рукой нет LM338 или LM350.

Вариант стабилизатора тока на 3А сделан на транзисторе КТ818, Амперы в нагрузке регулируются и рассчитывается во всех схемах одинаково на калькуляторе.

Пример расчётов и сборки

Если собрать очень хочется а подходящего блока питания нет, то есть несколько вариантов это решить. Выменять у соседа или подключить схему к батарее на 9V типа Крона. На фото видно всю схему в сборе со светодиодом.

Если для светодиодов необходим 1А, то указываем это в калькуляторе и получаем результат 1,25ом. Резистора точно такого номинала нет, поэтому устанавливаем подходящий с номиналом в сторону увеличения Ом. Второй вариант, это использовать параллельное и последовательное подключение резисторов. Правильно подключив несколько сопротивлений получим необходимое количество Ом.

Ваши стабилизаторы тока на LM317 будут похожи на ниже представленные изделия.

А если вы страдаете полным светодиодным фанатизмом, то будет выглядеть так.

Основные электрические характеристики

Настоятельно рекомендую не эксплуатировать LM317 на предельных режимах, китайские микросхемы не имеют запаса прочности. Конечно есть встроенная защита от короткого замыкания и перегрева, но не надейтесь что она будет срабатывать каждый раз.

В результате перегрузки может выгореть не только ЛМ317 но и то что к ней подключено, а это уже совсем другой ущерб.

Основные параметры LM317:

  1. входное до 40В;
  2. нагрузка до 1,5А;
  3. нагрев до 125°;
  4. регулятор КЗ.

Если нагрузки в 1А вам будет недостаточно, то можно применить более мощные модели стабилизаторов LM338 и LM350, 5А и 3А соответственно.

Внешний вид LM338

Для улучшения теплоотдачи увеличен корпус TO-3, такой часто встречается у советских транзисторов. Но выпускается и в малом корпусе TO-220, рассчитанном на меньшие нагрузки.

Параметры LM338:

  1. входное до 32V;
  2. нагрузка до 5А;
  3. защита от перегрева и короткого замыкания.

Расположение контактов на LM338

Импульсные драйверы

Благодаря китайскому трудолюбию блоки питания, стабилизаторы тока и напряжения можно купить в зарубежных интернет-магазинах по 50-150руб. Регулировка приводится небольшим переменным сопротивлением, при 2-3 Амперах они не требуют радиатора для охлаждения контроллера драйвера. Заказать можно например на популярном базаре Aliexpress.com Основной недостаток, это ждать 2-4 недели, но цена самая низкая, можно брать сразу полкило.

Часто ищу на Авито в своём городе, способ быстрый и недорогой. Я и многие другие заказывают стабилизаторы с запасом, вдруг будут неисправные. Затем лишнее продают по объявлениям, и всегда можно поторговаться.

Здравствуйте! мне понравилась схема токового стабилизатора в паре с транзистором кт818. а можно ли Вас попросить нарисовать схему с транзистором кт 808 или 2n3055, у меня просто 10 штук дома лежит. Спасибо.

Нарисовать мало, схему надо опробовать и настроить. Лучше купить обычный KT818.

Здавствуйте, спасибо вам за ценные статьи и советы, узнал много нового. Подскажите пожалуйста, хочу подключить 3 светодиодные матрицы по 10 Вт., полный спектр от ноутбучного блока 40вт. Правильно ли я понял, потребуется три стабилизатора тока и три резистора, подключать все три матрицы(с установленными в каждой стабилизатором и резистором) параллельно? Какого сечения провод выбрать, и нет ли подводных камней с «полным спектром»?

Читайте раздел «Питание» на моём сайте.

Испытывал я ЛМ317Т в качестве регулятора напряжения (две штуки). Хочу сказать, что защиты от КЗ методом ограничения тока у нее НЕ ОБНАРУЖЕНО. Валит 1,6 А, 1,8 А, если плавно повышать проводимость микросхемы. Может, мне попались две подделки?

Наверное подделка, у меня отключается она при замыкании.

Добрый день!
Я правильно понял: для безотказной работы светодиода, в сети автомобиля с напряжением 14,5 в ,достаточно стабилизатора тока?Или необходимо ещё стабилизировать напряжение?
Вами указан готовый китайский стабилизатор тока на плате с LM317,конденсатором и 2а клемника,но он вроде как является стабилизатором напряжения(судя по описанию продавцом) ссылка на товар:
Что посоветуете использовать для подключения китайской светодиодной ленты в автомобиле?

Читайте также:  Декоративная штукатурка для внутренней отделки в туалете

Прочитайте статью про подключение светодиодной ленты в авто

Если мы устанавливаем светодиоды в цепочки (последовательное соединение) или подключаем параллельно добиться одинаковой светимости можно только если протекающий ток будет через них одинаков.

Еще хочу заострить внимание на том что светодиоды очень боятся обратного напряжения, оно очень низкое 5 — 6 вольт, импульсы обратного тока (а автомашинах) способны значительно сократить срок службы.

Значить как сделать самый простой стабилизатор тока?

Для этого берем LM317 если нужно стабилизировать ток в пределах до 1 ампера или LM317L если необходима стабилизация тока до 0,1 А. Даташит можно скачать здесь!

Так выглядят стабилизаторы LM317 с рабочим током до 1,5 А.

А так LM317L с рабочим током до 100 мА.

Для тех кто не знает Vin — это сюда подается напряжение, Vout — отсюда получаем…, а Adjust вход регулировки. В двух словах LM317 это стабилизатор с регулируемым выходным напряжением. Минимальное выходное напряжение 1,25 вольта (это если Adjust "посадить" прямо на землю) и до входного напряжения минус наши 1,25 вольта. Т.К. максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.

Для того чтобы LM317 превратить в стабилизатор тока нужен всего 1 резистор!

Схема включения выглядит следующим образом:

С формулы внизу рисунка очень просто рассчитать величину резистора для необходимого тока. Т.е сопротивление резистора равно — 1,25 разделить на требуемый ток. Для стабилизаторов до 0,1 ампера мощность резистора 0,25 W вполне годиться. На токи от 350 мА до 1 А рекомендуется 2 вата. Для тех кто не хочет считать привожу таблицу резисторов на токи для широко распространенных светодиодов.

Ток (уточненный ток для резистора стандартного ряда) Сопротивление резистора Примечание
20 мА 62 Ом стандартный светодиод
30 мА (29) 43 Ом "суперфлюкс" и ему подобные
40 мА (38) 33 Ом "суперфлюкс" и ему подобные
80 мА (78) 16 Ом четырехкристальные
350 мА (321) 3,9 Ом одноватные
750 мА (694) 1,8 Ом трехватные
1000 мА (962) 1,3 Ом 5 W

А теперь пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг…).

Для белых светодиодов рабочее напряжение в среднем равно 3,2 вольта. В автомашине (легковой) бортовое напряжение колеблется (в опять же среднем) от 11,6 вольт в режиме работы от аккумулятора и до 14,2 вольта при работающем двигателе. Для российских машин учтем выбросы в "обратке" (и в прямом направлении до 100 ! вольт).

Включить последовательно можно только 3 светодиода — 3,2*3 = 9,6 вольта, плюс 1,25 падение на стабилизаторе = 10,85. Плюс диод от обратного напряжения 0,6 вольта = 11,45 вольта.

Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле — это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.

P.S. Подбирайте количество светодиодов так чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это надо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LMка потребует радиатор.

В принципе супрессор для дешевых светодиодов можно и не ставить, но диод для в автомобиле обязателен! Рекомендую его ставить даже если вы просто подключаете светодиоды с гасящим резистором.

Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне, но если надо пишите на форуме.

Еще забыл: — по схеме, если непонятно! На К1 подаем плюс "+", а на К2 минус (на шасси автомашины садим)."

В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:

  • способен работать в диапазоне выходных напряжений от 1,2 до 37 В;
  • выходной ток может достигать 1,5 А;
  • максимальная рассеиваемая мощность 20 Вт;
  • встроенное ограничение тока, для защиты от короткого замыкания;
  • встроенную защиту от перегрева.

У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе. Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.

Второй параметр – ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум 100 мкА, но в реальных условиях он может достигать 500 мкА. Поэтому чтобы обеспечить стабильное выходное напряжение приходиться через делитель R1-R2 гнать ток от 5 мА. А это значит что сопротивление R1 не может больше 240 Ом, кстати именно такое сопротивление рекомендуют в схемах включения из datasheet.
Первый раз, когда я посчитал делитель для микросхемы по формуле из LM317T datasheet, я задавался током 1 мА, а потом я очень долго удивлялся почему напряжение реальное напряжение отличается. И с тех пор я задаюсь R1 и считаю по формуле:
R2=R1*((Uвых/Uоп)-1).
Тестирую в реальных условиях и уточняю значения сопротивлений R1 и R2.
Посмотрим какие должны быть для широко распространенных напряжений 5 и 12 В.

Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.

А вот расположение выводов LM317T:

Кстати у отечественного аналога LM317 — КР142ЕН12А схема включения точно такая же.

На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.

На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
Например, таким образом мы получаем из lm317t стабилизатор тока для светодиодов:

  • для одноватных светодиодов I = 350 мА, R1 = 3,6 Ом, мощностью не менее 0,5 Вт.
  • для трехватных светодиодов I = 1 А, R1 = 1,2 Ом, мощностью не менее 1,2 Вт.

На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.

Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.

Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.

Мощные аналоги LM317T — LM350 и LM338

Если выходного тока в 1,5 А недостаточно, то можно использовать:

  • LM350AT, LM350T — 3 А и 25 Вт (корпус TO-220)
  • LM350K — 3 А и 30 Вт (корпус TO-3)
  • LM338T, LM338K — 5 А

Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.

24 thoughts on “ LM317T схема включения ”

Для lm317 datasheet от TI тут.
Кому сложно читать datasheet на английском, то можно посмотреть документацию на русском для отечественного аналога КР142ЕН12А.

Кроме мощных аналогов, есть и маломощные LM317L рассчитанные на ток не более 0,1 А, в корпусах SOIC-8 и TO-92.

  • LM317LM — в поверхностном корпусе SOIC-8;
  • LM317LZ — в штырьевом корпусе TO-92.

Не забудьте установить микросхему на радиатор, надо помнить, что корпус не изолирован от вывода. Чем больше падение напряжения на микросхеме — разница между входным и выходным напряжением, тем меньше максимальная мощность.

Я бы уточнил, что от падения напряжения зависит «максимальная выходная мощность».
А максимальная мощность рассеиваемая на микросхеме зависит от корпуса и эффективности охлаждения.

Макс. мощность, рассеиваемая микросхемой — паспортная величина и не может быть превышена при любом охлаждении.

Оверклокеры с таким утверждением не соглясятся 🙂
Да я и не призываю «разгонять» стабилизаторы напряжения, даже наоборот: соблюдение рекомендаций производителя компонентов, важное условие надежной работы электронного устройста.
Если невозможно или слишком дорого обеспечивать надежное охлаждение, то нужно снижать планку максимально возможной мощности. А определить эту максимальную мощность можно зная максимально допустимую температуру кристалла, максимальную температуру окружающей среды и все тепловые сопротивления от кристалла до окружающей среды.

Есть паспортная максимальная мощность, которая кстати зависит от корпуса стабилизатора. А есть реальная максимальная мощность, которая получится при реальном максимальном напряжении и реальном максимальном токе. Так вот эта мощность нисколько не паспортная величина.

Максимальная мощность рассеивания по паспорту — это та, которую в состоянии рассеивать корпус устройства в нормальных условиях на протяжении длительного времени. Под НУ подразумевается температура в 20 цельсиев и влажность 85% при давлении 760 мм и отсутствие преград естественной циркуляции воздуха (плюс/минус 5%). Под длительным временем — не менее времени Максимальная мощность рассеивания по паспорту — это та, которую в состоянии рассеивать корпус устройства в нормальных условиях на протяжении длительного времени. Под НУ подразумевается температура в 20 цельсиев и влажность 85% при давлении 760 мм и отсутствие преград естественной циркуляции воздуха (плюс/минус 5%). Под длительным временем — минимальное время наработки на отказ, указанное в паспортных данных.

Тепловая и электрическая мощности — это немного разные параметры, хотя и взаимосвязанные.

Всегда относился к данной микросхеме, как к стабилизатору для начинающих, которые и запитывать от нее будут такие-же устройства.
Главную, на мой взгляд, мысль данной статьи: «…использовать в случае типовых напряжений, только когда…» — надо выделить жирным. Ее же, в таких случаях, не использовать вообще. Применять можно в малоточных регуляторах, где ни КПД, ни прецизионность стабилизации на динамическую нагрузку не важны.
Использование токовых усилителей, как на последней схеме, рентабельно применять только для фиксированных напряжений.

Читайте также:  Belmash j150 1170sa отзывы

Любопытно вот, насколько критично включение танталовых конденсаторов на входе и выходе LM317, как то рекомендует даташит? Никогда не шунтировал ее входы/выходы чем-то лучшим чем самые обычные электролитические конденсаторы плюс (иногда) керамика. И ни разу не получил самовозбуждения. То же самое с LM7805 и LM7812 (и с их отечественными аналогами). Как только не изгалялся, даже подключал конденсаторы длинными проводами. Прокатывало, ни один стабилизатор не «завелся». Разработчики перестраховались или рекомендация относительно танталовых конденсаторов непосредственно возле выводов микросхемы касается каких-то особых условий эксплуатации?

В некоторых схемах для некоторых задач (схемы с аудиоусилением, например) шумы стабилизатора заметны даже на слух. В некоторых других частных случаях из-за «шума» работы стабилизатора возникали нежданчики, которые не устранялись конденсаторами для «ЦП или ОЗУ по питанию». Для описания ситуации, когда такое происходит нужен «талмуд» листов пот тысячу. Производитель , который получал недоумённо-ругательные «комментарии» разработчиков — подстраховалсяотмазался коротким упоминанием о необходимости конденсаторов.

Действительно, странноватая рекомендация… Особенно, если учесть, что стоимость танталовых конденсаторов, превышает стоимость самой микросхемы, как правило. 317-ю использовал редко, а вот 7805 и 7812 — десятками, и никогда проблем, обусловленных отсутствием редкоземельных и драгсодержащих элементов, не было. Присоединяюсь к удивлению, так как никаких особых условий использования, придумать не могу. Стабильный стабилизатор, вот и весь каламбур ) ЦП или ОЗУ по питанию подстраховать, это еще могу понять, а его… не могу.

Отличая микросхема.Так и хочется поехать , купить и спаять что-нибудь. На этапе разработке часто не хватает такого , чтобы напряжением поиграть , двуполярное сделать. Да и помощнее есть устройства с таким же включением.

Как можно сделать схему, чтобы было два режима стабилизации тока. У меня к одной лампе подходит один плюс и два минуса. Нужно, чтобы по одному минусу было ярко, а по другому тускло.

Микросхема о которой ведется речь — регулируемый стабилизатор напряжения, не тока. Для вашей задачи подойдут обычные биполярные транзисторы используемые в качестве усилителей тока. Два корпуса. Их мощность должна соответствовать мощности вашей лампы, а напряжение — питающему напряжению. Ток, обеспечивающий желаемую тусклость задайте базовым резистором, можно подстроечным. И, желательно, в вопрос вкладывать побольше информации… лампа, а какая? Много их, разных.

А через диод подай отрицательный полупериод с трансформатора -! Будет тебе «ночничок», и не надо три провода тянуть через подушку…

Хочу собрать на LM317 зарядное устройство для NI-MH аккумалятора (одного). На входе — 5 вольт, на выходе — 1,5 вольт. Схему уже нашел. Но там 5 вольт берут с USB порта компьютера. А можно ли взять 5 вольт с зарядки от мобильного телефона? И, наверное, нужно выбрать такую зарядку, у которой выходной ток — не меньше, чем ток зарядки аккумулятора?

Конечно, вполне можно питать и от зарядки. Да, и ток источника должен быть не меньше тока потребителя.

Про ток зарядки от мобильника можете не беспокоиться — вряд ли вам удастся найти такую, ток которой был бы ниже, чем ток выдаваемый с порта USB. Как правило, он составляет 0,6-0,7 А. Этого вполне достаточно для зарядки не менее, чем 5-амперного аккумулятора. Если нужно больше, то зарядное просто не подойдет — это настолько стандартизированное изделие, что больше, чем на 0,75 А — вам вряд ли удастся найти.

Да есть же уже ЗУ с токами 1 и 2 А для зарядки смартфонов или планшетов, как раз многие из них уже с портом usb. Но тут уже стоит обратить внимание на качественный кабель, или спаять самому, стандартные китайские кабели такие токи редко способны передать

Вы немного путаете порт USB с его разъемом. Понимаете, USB, в первую очередь — Serial Bus, а уж во вторую — Universal. Вторая причина и послужила столь частому, но не совсем профильному использованию данного Разъема в различных блоках питания и зарядных устройствах, что не оснащает их, непосредственно Портом. А что касается кабелей USB, то они, по определению, должны соответствовать стандартам своего класса (1.1; 2.0; 3.0), а не тому, что вы подразумеваете под «китайским стандартом».

Частоту бы узнать максимальную, с которой эта микросхема работает. Если у меня идет коммутация импульсов с частотой 10 КГц, будет ли она держать ток каждого импульса в пределах значений, заданных резистором?
И как лучше её расположить на схема? Рис прилагаю.
https://sun9-1.userapi.com/c639822/v639822216/5396d/MX1daHe-rjs.jpg

Этот стабилизатор для работы на постоянном токе.
Если нужно получить пульсирующий ток, то правильнее будет «закорачивать» оптроном нагрузку.
Но применять в таком случае интегральный стабилизатор, я бы не стал. А собрал бы простенький стабилизатор на транзисторе и стабилитроне. Например такой:
Ну не предназначены интегральные стабилизаторы постоянного напряжения, для стабилизации пульсирующего тока.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Какой ток или мощность потребляет сама м-схема в режиме холостого хода без нагрузки?

Так и не понял, как регулировать выходное напряжение

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *