Эта характеристика отражает зависимость напряжения на зажимах генератора от тока нагрузки:
Рис.14.2.Внешняя характеристика генератора с параллельным возбуждением.
У генератора параллельного возбуждения ток во внешней цепи меняется с изменением сопротивления нагрузки. Если сопротивление внешней цепи уменьшается, растет ток нагрузки. (Говорят – «увеличивается нагрузка генератора»)
При увеличении нагрузки напряжение на зажимах генератора под влиянием реакции якоря и падения напряжения в цепи якоря уменьшается. Снижение напряжения вызывает уменьшение тока возбуждения
В свою очередь, уменьшение Iв вызывает ослабление основного магнитного потока, а следовательно, уменьшение э.д.с. и напряжения на зажимах генератора.
С понижением напряжения происходит дальнейшее уменьшение Iв.
При этом магнитная система генератора постепенно размагничивается. В генераторе с параллельным возбуждением ток нагрузки увеличивается лишь до определенного критического значения Iкр, превышающего номинальное не более чем в 2—2,5 раза.
Величина тока нагрузки зависит от двух факторов: величины напряжения генератора и сопротивления нагрузки. При увеличении тока нагрузки уменьшается напряжение на зажимах генератора (рис. 14.2.).
В начале, когда магнитная система насыщена, размагничивание идет медленно и напряжение U изменяется незначительно, вследствие чего ток в цепи якоря увеличивается. Однако при дальнейшем увеличении тока степень насыщения магнитной системы резко уменьшается, и напряжение начинает быстро падать. Преобладающим будет уже не уменьшение сопротивления цепи, а понижение напряжения.
Поэтому ток, достигнув критического значения, начнет уменьшаться. При к.з Iв =0, так как U = 0.Величина Iк.з. будет определяться только величиной э.д.с. остаточной индукции:
Таким образом, к.з, вызванное постепенным уменьшением сопротивления нагрузки, не опасно для генератора параллельного возбуждения.
Но при внезапном коротком замыкании магнитная система генератора не успевает сразу размагнититься, и ток Iк.з. достигает опасных для машины значений. При таком резком возрастании тока па валу генератора возникает значительный тормозящий момент, а на коллекторе появляется сильное искрение, переходящее в круговой огонь.
Дата добавления: 2014-12-24 ; просмотров: 1020 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
В генераторе параллельного возбуждения, который иногда называют шунтовым, обмотка возбуждения включена параллельно обмотке якоря (рис. 33, а).
При вращении якоря генератора магнитный поток остаточного магнетизма индуктирует в его обмотке небольшую э. д. с, а так как к якорю подключена обмотка возбуждения полюсов, то в ней появляется незначительный ток, обусловленный этой э. д. с. Ток возбуждения вызывает увеличение магнитного потока полюсов, что, в свою очередь, приводит к увеличению э. д. с. и т. д.
Величина установившегося напряжения холостого хода зависит от величины сопротивления цепи возбуждения, а также от степени насыщения магнитной системы машины.
Основные условия самовозбуждения генератора постоянной тока параллельного возбуждения таковы:
а)Наличие в стали полюсов остаточного магнетизма.Отсутствие остаточного магнетизма редко наблюдается в машинах постоянного тока. Для восстановления остаточного магнетизма обмотку возбуждения па короткое время нужно подключить к источнику постоянного тока.
б)Правильное (согласное) соединение обмотки возбуждения иобмотки якоря, чтобы магнитный поток, создаваемый обмоткой возбуждения, совпадал по направлению с магнитным потоком остаточного магнетизма.Если обмотки возбуждения и якоря включены так, что магнитные потоки полюсов и остаточного магнетизма направлены встречно, то происходит размагничивание полюсов, препятствующее возбуждению машины. Для возбуждения машины нужно изменить направление вращения якоря или переключить концы обмотки возбуждения.
в)Выведение регулировочного реостата из цепи возбуждения.Когда реостат в цепи обмотки возбуждения не выведен, по обмотке возбуждения протекает очень малый ток, недостаточный для самовозбуждения.
г)Отключение нагрузки у генераторов параллельного возбуждения. Если нагрузка не отключена, то ток в обмотке возбуждения недостаточен для самовозбуждения.
Рис. 33. Генератор параллельного возбуждения: а) схема; б) внешняя характеристика
Характеристики холостого хода(U = f(Iв) при Iнг. = 0 и n= const)и регулировочная(IВ =f(Iнг) при п =const и U = const) для генератора параллельного возбуждения снимаются таким же образом, как и для генератора независимого возбуждения; их вид и назначение те же. Характеристика короткого замыкания(1к = f(Iв) при п = const и U = 0) в этом случае подобна той же характеристике генератора независимого возбуждения; снять ее можно только по схеме независимого возбуждения, так как у короткозамкнутого генератора параллельного возбуждения не будет тока возбуждения.
Внешняя характеристика генератора параллельного возбуждения значительно отличается от аналогичной характеристики генератора независимого возбуждения. Эту характеристику снимают по схеме, приведенной на рисунке 33, а.
Для сравнения на рисунке 33, б приведены внешние характеристики генератора независимого возбуждения (1) и параллельного возбуждения (2).
По мере увеличения нагрузки напряжение генератора независимого возбуждения постепенно понижается вследствие падения напряжения на сопротивлении обмотки якоря и размагничивающего действия реакции якоря. Ток возбуждения в генераторе независимого возбуждения при снятии внешней характеристики не изменяется, постоянна по величине и э. д. с. генератора.
У генератора параллельного возбуждения ток возбуждения Iв зависит отнапряжения машины , а так как напряжение машины Uс увеличением нагрузки уменьшается, то снижается и величина тока возбуждения, что приводит к большему изменению напряжения по сравнению с генератором независимого возбуждения. С увеличением нагрузки происходит размагничивание генератора, и поэтому в генераторе параллельного возбуждения ток нагрузки возрастает только до определенного, критического значения токаIкр, превышающего номинальный ток в 2—2,5 раза.
При достижении критического тока напряжение машины сразу понижается до нуля, ав обмотке якоря протекает незначительный по величине ток короткого замыкания, обусловленный э. д. с. остаточного магнетизма.
Напряжение генератора параллельного возбуждения вначале изменяется незначительно, так как, пока сталь полюсов еще насыщена, влияние размагничивания машины сказывается мало. По мереувеличения тока нагрузки происходит уменьшение напряжения идальнейшее размагничивание машины, что приводит к более резкому понижению напряжения, а при достижении критического тока к быстрому исчезновению («сбрасыванию») напряжения и нагрузки.
Ток короткого замыкания не опасен для генератора параллельного возбуждения, но критический ток может вызвать круговой огонь на коллекторе.
Генераторы параллельного возбуждения широкое применяются в сельскохозяйственных машинах (машинные возбудители синхронных генераторов, на автомобилях, тракторах и в зарядных агрегатах).
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8460 – | 7349 – или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Эта характеристика представляет собой зависимость напряжения U навыводах генератора от тока нагрузки I. При снятии данных для построения внешней характеристики генератор приводят во вращение с номинальной скоростью и нагружают его до номинального тока при номинальном напряжении. Затем, постепенно уменьшая нагрузку вплоть до х.х. (I= 0), снимают показания приборов. Сопротивление цепи возбуждения rB и частоту вращения в течение опыта поддерживают неизменными.На рис. 28.4, а представлена внешняя характеристика генератора независимого возбуждения, из которой видно, что при увеличении тока нагрузки I напряжение на выводах генератора понижается; это объясняется размагничивающим влиянием реакции якоря и падением напряжения в цепи якоря. Наклон внешней характеристики к оси абсцисс (жесткость внешней характеристики) оценивается номинальным изменением напряжения генератора при сбросе нагрузки:
.
Обычно для генератора независимого возбуждения ΔUном = 5 – 10% .
Регулировочная характеристика генератора постоянного тока независимого возбуждения
Характеристика IВ= F(I) показывает, как следует менять ток в цепи возбуждения, чтобы при изменениях нагрузки генератора напряжение на его выводах оставалось неизменным, равным номинальному. При этом частота вращения сохраняется постоянной (n – const).
При работе генератора без нагрузки в цепи возбуждения устанавливают ток Iво, при котором напряжение на выводах генератора становится равным номинальному. Затем постепенно увеличивают нагрузку генератора, одновременно повышают ток возбуждения таким образом, чтобы напряжение генератора во всем диапазоне нагрузок оставалось равным номинальному. Так получают восходящую ветвь характеристики (кривая 1 на рис. 28.4, б). Постепенно уменьшая нагрузку генератора до х.х. и регулируя соответствующим образом ток возбуждения, получают нисходящую ветвь характеристики (кривая 2 на рис. 28.4, б). Нисходящая ветвь регулировочной характеристики расположена ниже восходящей, что объясняется влиянием возросшего остаточного намагничивания магнитной цепи машины в процессе снятия восходящей ветви. Среднюю кривую 3,проведенную между восходящей и нисходящей ветвями, называютпрактической регулировочной характеристикой генератора.
Основной недостаток генераторов независимого возбуждения — это необходимость в постороннем источнике энергии постоянного тока — возбудителе. Однако возможность регулирования напряжения в широких пределах, а также сравнительно жесткая внешняя характеристика этого генератора являются его достоинствами.
25. Характеристики генератора постоянного тока параллельного возбуждения
Определение. Генераторами параллельного возбуждения называют генераторы, обмотка возбуждения которых питается от ЭДС обмотки якоря и подключена к выводам якоря машины параллельно цепи нагрузки.
Схема генератора параллельного возбуждения. Схема изображена на рис. 1.20. Ток якоря IЯ = I+ IВ у щеток разветвляется на ток нагрузкиI и ток возбуждения IВ . Обычно ток возбуждения невелик и составляет (0,01-0,05) IЯ.НОМ . Последовательно с обмоткой возбуждения включается реостат RP для регулирования возбуждения. Реостат позволяет изменять ток возбуждения и, следовательно, напряжение генератора.
Характеристика холостого хода генератора с самовозбуждением всегда снимается при независимом возбуждении (обмотка возбуждения отключается от якоря и запитывается от постороннего источника) и поэтому аналогична характеристике холостого хода генератора с независимым возбуждением.
Характеристика холостого хода U0=f (Iв) при I=0 и n=const. В процессе самовозбуждения в генераторах параллельного возбуждения Ia=Iв, причем Iв=(0,02…0,03) Iн. Поэтому можно пренебречь реакцией якоря и падением напряжения в обмотке якоря и считать, что между характеристиками холостого хода генератора параллельного возбуждения и независимого возбуждения практически нет разницы. Следует учесть, что эта характеристика может быть снята только в одном квадранте, так как процесс самовозбуждения в данном генераторе может протекать только в одном направлении при согласном действии остаточного магнитного потока и потока, создаваемого током возбуждения, причем на прямолинейном участке характеристики напряжение генератора не удается регулировать как у генератора независимого возбуждения, что определяет меньший диапазон регулирования его напряжения.
Нагрузочная характеристика U=f (Iв) при I=const и n=const. Нагрузочные характеристики генератора параллельного возбуждения практически совпадают с характеристиками генератора независимого возбуждения, так как увеличение тока Iа на величину тока возбуждения при параллельном возбуждении не может оказать заметного влияния на напряжение генератора.
Внешняя характеристика U=f (I) при rв=const и n=const (рисунок 1) показывает влияние изменения нагрузки на напряжение генератора. При этом ток возбуждения не регулируется с помощью регулировочного реостата. Следует учесть, что при независимом возбуждении
а при параллельном возбуждении
Последнее равенство означает, что при снятии внешней характеристики ток возбуждения генератора изменяется пропорционально напряжению на генераторе. Таким образом, уменьшение напряжения генератора параллельного возбуждения при увеличении его нагрузки вызывается не только размагничивающим действием реакции якоря и падением напряжения в цепи якоря, но и уменьшением тока возбуждения. Поэтому внешняя характеристика генератора параллельного возбуждения (рисунок 1 ) (кривая 1) располагается ниже внешней характеристики генератора независимого возбуждения (кривая 2).
В генераторе параллельного возведения ток нагрузки I будет увеличиваться только до определенного критического значения Iкр=(2. 2,5) Iн, после чего он начнет уменьшаться до Iко M1, то скорость электродвигателя начнет уменьшаться. При этом уменьшается и против э. д. с., а ток в обмотке якоря, согласно выражению (22), будет возрастать, что вызовет возрастание вращающего момента. Уменьшение числа оборотов будет происходить до тех пор, пока вращающий момент не станет равным моменту сопротивления Мс2.
При уменьшении момента сопротивления происходит обратный процесс. Если момент сопротивления станет меньше вращающего момента, развиваемого электродвигателем, то скорость вращения последнего начнет возрастать. Это вызовет возрастание противо э. д. с., а значит, уменьшение тока и вращающего момента. Процесс прекратится, когда вращающий момент станет равным моменту сопротивления на валу электродвигателя.
28. Электромеханические (скоростные) и механические характеристики двигателя постоянного тока последовательного возбуждения.
Коллекторные двигатели послдовательного возбуждения чаще применяются в неуправляемых электроприводах. Их достоинством является возможность одновременного обеспечения большого пускового момента и высокой скорости холостого хода, что способствует их применению в качестве тяговых двигателей на транспорте или исполнительных двигателей механизмов с широким диапазоном скоростей. В последнее время такие двигатели находят применение в бытовой технике. Например, в приводе барабана стиральной машины, где эти двигатели используются и как управляемые
Схема замещения двигателя в первом приближении может быть представлена в виде рис. 2.12, где, кроме обозначений, принятых в предыдущем параграфе, обозначено Rвт, Lвт – активное сопротивление и индуктивность короткозамкнутого контура вихревых токов.
Рис. 2.12. Схема замещения двигателя постоянного тока последовательного возбуждения
Из теории электрических машин известно, что вихревые токи образуются в полюсах и в магнитопроводе двигателя при быстром изменении потока. В двигателях большой мощности влияние короткозамкнутого контура на динамические свойства может оказаться существенным. Однако для рассматриваемого класса приводов с мощностью до нескольких киловатт этим влиянием можно пренебречь. Тогда, в соответствии со схемой замещения и с учетом выражения (2.3), уравнение напряжения якорной цепи получит вид
В отличие от двигателей независимого возбуждения здесь магнитный поток является функцией тока якоря. Как мы отмечали, эта зависимость нелинейная, поэтому нелинейная и механическая характеристика, которую для реальной зависимости потока от тока (см. рис. 2.8.а) вообще трудно выразить аналитически. Для того, чтобы представить электромеханические характеристики в аналитической форме, заменим, как мы делали в предыдущем параграфе, реальную зависимость потока от тока аппроксимированной, вида (см. рис. 2.8.б). Тогда в установившемся режиме при iя≤Iнс, где Iнс – ток двигателя, при котором наступает насыщение магнитной системы, из уравнения (2.57) с учетом (2.6) и (2.43.а) получим уравнения электромеханической:
и механической характеристик:
Здесь k1 – коэффициент, связывающий поток двигателя с током якоря (Φ=k1Iя).
При iя>Iнс из-за насыщения системы согласно (2.43.б) поток условно можно принять постоянным, как и в двигателе независимого возбуждения, поэтому для описания характеристик с определенной степенью приближения справедливы выражения (2.5) и (2.7). Электромеханические характеристики двигателя имеют вид (рис. 2.13).
Рис. 2.13. Механические характеристики двигателя последовательного возбуждения
Согласно рис. 2.13 жесткость механической характеристики двигателя последовательного возбуждения – переменная. Для ее оценки при M 2 a *rД), которые интенсивно растут с увеличением мощности двигателя.
Рис. 29.4. Механические характеристики двигателя параллельного возбуждения:
а — при введении в цепь якоря добавочного сопротивления;
б — при изменении основного магнитного потока;
в — при изменении напряжения в цепи якоря
Регулирование частоты вращения ДПТ НВ изменением основного магнитного потока
Этот способ регулирования в двигателе независимого возбуждения реализуется посредством реостата rрег в цепи обмотки возбуждения. Так, при уменьшении сопротивления реостата возрастает магнитный поток обмотки возбуждения, что сопровождается понижением частоты вращения [см. (29.5)]. При увеличении rрег частота вращения растет. Зависимость частоты вращения от тока возбуждения выражается регулировочной характеристикойдвигателя n=f(IВ) при и.
Из выражения (29.5) следует, что с уменьшением магнитного потока Ф частота вращения n увеличивается по гиперболическому закону (рис. 29.5,а). Но одновременно уменьшение Ф ведет к росту тока якоря Ia = M/(Cм*Ф). При потоке ток якоря достигает значения, т. е. падение напряжения в цепи якоря достигает значения, равного половине напряжения, подведенного к якорю . В этих условиях частота вращения двигателя достигает максимума nmax. При дальнейшем уменьшении потока частота вращения двигателя начинает убывать, так как из-за интенсивного роста тока Ia второе слагаемое выражения (29.9) нарастает быстрее первого.
При небольшом нагрузочном моменте на валу двигателя максимальная частота вращения nmax во много раз превосходит номинальную частоту вращения двигателя nном и является недопустимой по условиям механической прочности двигателя, т. е. может привести к его «разносу». Учитывая это, при выборе реостата rрег необходимо следить за тем, чтобы при полностью введенном его сопротивлении частота вращения двигателя не превысила допустимого значения.
Например, для двигателей серии 2П допускается превышение частоты вращения над номинальной не более чем в 2—3 раза. Необходимо также следить за надежностью электрических соединений в цепи обмотки возбуждения двигателя, так как при разрыве этой цепи магнитный поток уменьшается до значения потока остаточного магнетизма Фост, при котором частота вращения может достигнуть опасного значения.
Вид регулировочных характеристик n = f(Ф) зависит от значения нагрузочного момента M2 на валу двигателя: с ростом M2 максимальная частота вращения nmax уменьшается (рис. 29.5, б).
Рис. 29.5. Регулировочные характеристики двигателя независимого возбуждения
Недостаток рассмотренного способа регулирования частоты вращения состоит в том, что при изменении магнитного потока Ф меняется угол наклона механической характеристики двигателя.
Рассмотренный способ регулирования частоты вращения прост и экономичен, так как в двигателях независимого возбуждения ток IВ = (0,01 — 0,07)Iа, а поэтому потери в регулировочном реостате невелики.
Однако диапазон регулирования обычно составляет nMAX/nMIN = 2 — 5. Объясняется это тем, что нижний предел частоты вращения обусловлен насыщением машины, ограничивающим значение магнитного потока Ф, а верхний предел частоты опасностью «разноса» двигателя и усилением влияния реакции якоря, искажающее действие которого при ослаблении основною магнитного потока Ф усиливается и ведет к искрению на коллекторе или же к появлению кругового огня.
Регулирование частоты вращения ДПТ НВ изменение напряжения в цепи якоря
Регулирование частоты вращения двигателя изменением питающего напряжения применяется лишь при IB = const, т. е. при раздельном питании цепей обмотки якоря и обмотки возбуждения при независимом возбуждении.
Частота вращения в режиме х.х. n0 пропорциональна напряжению, а от напряжения не зависит, поэтому механические характеристики двигателя при изменении напряжения не меняют угла наклона к оси абсцисс, а смещаются по высоте, оставаясь параллельными друг другу (см. рис. 29.4,в). Для осуществления этого способа регулирования необходимо цепь якоря двигателя подключить к источнику питания с регулируемым напряжением. Для управления двигателями малой и средней мощности в качестве такого источника можно применить регулируемый выпрямитель, в котором напряжение постоянного тока меняется регулировочным автотрансформатором (АТ), включенным на входе выпрямителя (рис. 29.6,а).
Для управления двигателями большой мощности целесообразно применять генератор постоянного тока независимого возбуждения; привод осуществляется посредством приводного двигателя (ПД), в качестве которого обычно используют трехфазный двигатель переменного тока. Для питания постоянным током цепей возбуждения генератора Г и двигателя Диспользуется возбудитель В — генератор постоянного тока, напряжение на выходе которого поддерживается неизменным. Описанная схема управления двигателем постоянного тока (рис. 29.6, б) известна под названием системы «генератор — двигатель» (Г—Д).
Рис. 29.6. Схемы включения двигателей постоянного тока при регулировании частоты вращения изменением напряжения в цепи якоря
Изменение напряжения в цепи якоря позволяет регулировать частоту вращения двигателя вниз от номинальной, так как напряжение свыше номинального недопустимо. При необходимости регулировать частоту вращения вверх от номинальной можно воспользоваться изменением тока возбуждения двигателя.
Изменение направления вращения (реверс) двигателя, работающего по системе Г—Д, осуществляется изменением направления тока в цепи возбуждения генератора Г переключателем П, т. е. переменой полярности напряжения на его зажимах. Если двигатель постоянного тока работает в условиях резко переменной нагрузки, то для смягчения колебаний мощности, потребляемой ПД из трехфазной сети, на вал ПД помещают маховик М,который запасает энергию в период уменьшения нагрузки на двигатель Д и отдает ее в период интенсивной нагрузки двигателя.
Регулирование частоты вращения изменением напряжения в цепи якоря обеспечивает плавное экономичное регулирование в широком диапазонеnMAX/nMIN ≥ 25 . Наибольшая частота вращения здесь ограничивается условиями коммутации, а наименьшая — условиями охлаждения двигателя.
Еще одним достоинством рассматриваемого способа регулирования является то, что он допускает безреостатный пуск двигателя при пониженном напряжении.