Меню Рубрики

Все о датчиках температуры

Содержание

Как выбрать не дорогой и надежный датчик температуры? Это актуальная проблема, особенно для тех потребителей, которые впервые сталкиваются с необходимостью измерения температуры. Вот ряд вопросов, на которые необходимо обратить внимание при выборе датчика:

  1. В каком температурном диапазоне Вы желаете измерять температуру, и какие допуски по точности измерений Вас устроят?
  2. Возможно ли будет расположить датчик внутри измеряемой среды или объекта? Если «нет», то Ваш выбор – радиационные термометры.
  3. В каких условиях будет работать датчик (нормальные, повышенной влажности, высоко окислительная атмосфера, пожароопасные, сейсмоопасные и т.д.)?
  4. Возможно ли будет демонтировать датчик для периодической поверки и какая долговременная стабильность желательна?
  5. Какова должна быть взаимозаменяемость датчиков? Допустима ли индивидуальная градуировка?
  6. Актуально ли для Вас получение результата в градусах, или Вас устроит измерение сигнала (сопротивление, напряжение, ток) с последующим самостоятельным пересчетом в температуру?

В данном разделе мы приводим лишь очень краткое описание наиболее распространенных датчиков температуры. Приглашаем изготовителей датчиков температуры пополнять раздел и размещать здесь информацию о своих новых разработках.

Важное замечание: в приборах, где сигнал датчика преобразуется в значение температуры, либо другой выходной сигнал, неопределенность измерения должна складываться из составляющей, зависящей от параметров первичного датчика и составляющей, обусловленной точностью преобразования сигнала. Часто потребитель, выбирающий средство измерения температуры, обращает внимание только на вторую составляющую, как правило, приведенную в документации на цифровой прибор или преобразователь. Между тем, необходимо выяснить с какими датчиками работает данный преобразователь и оценить суммарную неопределенность выходного сигнала.

Принцип работы

Термометры сопротивления (терморезисторы, термосопротивления)

Термометр сопротивления (Resistance Thermometer) — датчик для измерения температуры, принцип действия которого основан на зависимости электрического сопротивления от температуры.

Термосопротивления могут быть металлические (платина, никель, медь) или полупроводниковые.

Для большинства металлов температурный коэффициент сопротивления положителен – их сопротивление растёт с ростом температуры. Для полупроводников без примесей он отрицателен – их сопротивление с ростом температуры падает.

Термисторы

Термисторы – это полупроводниковые термосопротивления с большим температурным коэффициентом.

  • PTC-термисторы (Positive Temperature Coefficient), обладают свойством резко увеличивать свое сопротивление, когда достигнута заданная температура – широко используются для защиты двигателей
  • NTC-термисторы (Negative Temperature Coefficient), обладают свойством резко уменьшать свое сопротивление при достижении заданной температуры

PT100, PT1000

Платиновые термометры сопротивления (Platinum Resistance Thermometers) обладают высокой стойкостью к окислению и большой точностью измерения.

Кремниевые терморезисторы с положительным коэффициентом сопротивления, отличаются высокой линейностью характеристики, высоким быстродействием, надёжной твёрдотельной конструкцией и небольшой стоимостью.

Схемы включения термосопротивления в измерительную цепь

  • 2-х проводная схема используется там, где не требуется высокой точности, так как сопротивление присоединительных проводов суммируется с измеренным сопротивлением, что приводит к появлению дополнительной погрешности
  • 3-х проводная схема обеспечивает значительно более точные измерения, т.к. появляется возможность измерить сопротивление подводящих проводов и вычесть его из суммарного измеренного сопротивления
  • 4-х проводная схема – наиболее точная схема, обеспечивает полное исключение влияния подводящих проводов

Сравнение термометров сопротивления с термопарами

  • выше точность и стабильность
  • можно исключить влияние сопротивления присоединительных проводов на результат измерения при использовании 3-х или 4-х проводной схемы измерений
  • практически линейная характеристика
  • не требуется компенсация холодного спая
  • малый диапазон измерений
  • не могут измерять высокую температуру.

Термопары

Термопара (Thermocouple) – это два проводника из разных металлов, спаянные в одной точке. Эта точка измерения температуры называется – рабочий спай. Свободные концы называются холодным спаем. Если рабочий спай нагреть относительно холодного спая, то между свободными концами возникает напряжение (термо-ЭДС), пропорциональное разности температур.

Читайте также:  Ветонит клей для плитки и керамогранита

Так как с помощью термопары всегда измеряется разность температур, то, чтобы определить температуру точки измерения, свободные концы у холодного спая должны содержаться при известной неизменной температуре.

Подключение к ПЛК

Холодные концы подключаются (непосредственно или с помощью компенсационных проводов, которые должны быть выполнены из тех же металлов, что и термопара) к клеммам соответствующего аналогового входа (с соблюдением полярности!) промышленного контроллера, который программно выполняет компенсацию температуры холодного спая и рассчитывает температуру в точке измерения.

При внутренней компенсации контроллер использует температуру модуля, к которому подключена термопара. При более точной внешней компенсации эталонная температура холодного спая измеряется с помощью дополнительного термометра сопротивления, который подключается к специальному входу контроллера.

Типы термопар

  • K: хромель-алюмель
  • J: железо-константан
  • S, R: платина-платина/родий и др.

Термопары отличаются диапазоном измеряемых температур и погрешностью измерений.

Преимущества термопар

  • Большой температурный диапазон измерения
  • Измерение высоких температур.

Недостатки

  • Невысокая точность
  • Необходимость вносить поправку на температуру холодного конца.

Термостаты

Термостат (Thermostat) – это регулятор, который поддерживает постоянную температуру воздуха или жидкости в системах отопления, кондиционирования и охлаждения.

Как выбрать

Измеряемая среда

  • Измеряемая среда (выхлопные газы, морская вода, бензин и т.п.)
  • Диапазон рабочих температур измеряемой среды
  • Давление измеряемой среды
  • Скорость потока измеряемой среды.

Окружающая среда

  • Температура окружающей среды
  • Влажность
  • Наличие агрессивных сред
  • Взрывоопасная зона.

Первичный преобразователь

Чувствительный элемент (сенсор)

  • Тип датчика:
  • термосопротивление (Pt, Ni.)
  • термопара
  • Класс точности.
  • Способ монтажа защитной арматуры в резервуары и трубопроводы:

    • фланцевый (размер)
    • резьбовой (шаг)
    • приварной
    • асептическое (гигиеническое) присоединение.

    Схема электрического подключения для терморезистора:

    • 2-х проводная
    • 3-х проводная
    • 4-х проводная.

    Защитная трубка (гильза)

    • Материал
    • Длина погружаемой части датчика
    • Диаметр
    • Гигиеническая конструкция.

    Соединительные кабели:

    • Длина
    • Материал.

    Соединительная головка:

    • Степень защиты корпуса
    • Материал (алюминий, нержавеющая сталь, пластик)
    • Тип кабельного ввода
    • Материал электрических контактов (позолоченные).

    Преобразователь

    • Тип преобразователя:
    • встраиваемый в соединительную головку (Head)
    • для монтажа на DIN-рейку
    • для полевой установки на кронштейне, с индикатором
  • Тип подключаемого датчика:
    • термосопротивление
    • термопара
    • универсальный
    • Количество подключаемых датчиков к одному преобразователю
    • Вычисление (при подключении нескольких датчиков)
      • среднего значения
      • разности температур
      • Схема электрического подключения:
        • 2-х проводная
        • 3-х проводная
        • 4-х проводная
        • Точность измерения
        • Повторяемость измерения
        • Цикл измерения
        • Единицы измерения
        • Характеристика:
          • линейная
          • программируемая
          • Смещение нулевой точки
          • Контроль:
            • обрыва линии
            • короткого замыкания
            • Питание
            • Выходной сигнал:
              • токовый 4..20мА
                • гальваническая изоляция
                • сигнал ошибки
                • защита от обратной полярности
                • HART
                • PROFIBUS PA
                • Foundation Fieldbus.
                • Что такое и какие бывают датчики температуры. Рассмотрена классификация термодатчиков по принципу действия, когда какие типы датчиков лучше применять. На какие характеристики необходимо обратить внимание при выборе датчиков температуры. Обзор производителей и продавцов.
                  Вы также можете посмотреть другие статьи. Например, «Датчики измерения влажности(гигрометры)» или «Виды давления».

                  Большинство технологических процессов идет сейчас по пути автоматизации. Кроме того, управление многочисленными механизмами и агрегатами, а зачастую и машинами просто немыслимо без точных измерений всевозможных физических величин. Не маловажными являются измерение давления, измерение угловой скорости, а также линейной и многие-многие другие. Но самыми распространенными (около 50%) являются температурные измерения. К примеру, средняя по величине атомная станция располагает приблизительно 1500-ю контрольных (измерительных) точек, а крупное химпроизводство, насчитывает таких уже около 20 тыс.

                  Так как диапазон измерений и их условия могут сильно отличатся друг от друга, разработаны разные по точности, помехоустойчивости и быстродействию типы датчиков (и первичных преобразователей). Какого бы типа не был температурный датчик, общим для всех является принцип преобразования. А именно: измеряемая температура преобразуется в электрическую величину (как раз за это и отвечает первичный преобразователь). Это обусловлено тем, что электрический сигнал просто передавать на большие расстояния (высокая скорость приема-передачи), легко обрабатывать (высокая точность измерений) и, наконец, быстродействие.

                  Читайте также:  Гараж в классическом стиле

                  Дальше, предлагаем вам ознакомиться с различными видами датчиков температуры, а в конце статьи со список вопросов которые необходимо решить перед покупкой датчика температуры. Если же вы хотите сразу перейти к выбору и покупке термодатчика, можете воспользоваться нашим каталогом.

                  Виды датчиков температуры, по типу действия

                  Терморезистивные термодатчики

                  Терморезистивные термодатчики — основаны на принципе изменения электрического сопротивления (полупроводника или проводника) при изменении температуры. Разработаны они были впервые для океанографических исследований. Основным элементом является терморезистор — элемент изменяющий свое сопротивление в зависимости от температуры окружающей среды.

                  Несомненные преимущества термодатчиков этого типа это долговременная стабильность, высокая чувствительность, а также простота создания интерфейсных схем.

                  На изображении приведен датчик 702-101BBB-A00, диапазон измерения которого от -50 до +130 °С. Этот датчик относиться к группе кремневых резистивных датчиках(что это такое читайте двумя абзацами ниже). Обратите внимание, на его размеры. Производит этот датчик фирма Honeywell International

                  В зависимости от материалов используемых для производства терморезистивных датчиков различают:

                  1. Резистивные детекторы температуры(РДТ). Эти датчики состоят из металла, чаще всего платины. В принципе, любой мета изменяет свое сопротивление при воздействии температуры, но используют платину так как она обладает долговременной стабильностью, прочностью и воспроизводимостью характеристик. Для измерений температур более 600 °С может использоваться также вольфрам. Минусом этих датчиков является высокая стоимость и нелинейность характеристик.
                  2. Кремневые резистивные датчики. Преимущества этих датчиков —хорошая линейность и высокая долговременная стабильностью. Также эти датчики могут встраиваться прямо в микроструктуры.
                  3. Термисторы. Эти датчики изготавливаются из металл-оксидных соединений. Датчики измеряет только абсолютную температуру. Существенным недостатком термисторов является необходимость их калибровки и большой нелинейностью, а также старение, однако при проведении всех необходимых настроек могут использоваться для прецизионных измерений.

                  Полупроводниковые

                  В качестве примера изображен полупроводниковый датчик температуры LM75A, выпускаемый фирмой NXP Semiconductors. Диапазон измерений этого датчика от -55 до +150.

                  Полупроводниковые датчики регистрируют изменение характеристик p-n перехода под влиянием температуры. В качестве термодатчиков могут быть использованы любые диоды или биполярные транзисторы. Пропорциональная зависимость напряжения на транзисторах от абсолютной температуры (в Кельвинах) дает возможность реализовать довольно точный датчик.

                  Достоинства таких датчиков — простота и низкая стоимость, линейность характеристик, маленькая погрешность. Кроме того, эти датчики можно формировать прямо на кремневой подложке. Все это делает полупроводниковые датчики очень востребованными.

                  Термоэлектрические(термопары)

                  Термоэлектрические преобразователи — иначе, термопары. Они действуют по принципу термоэлектрического эффекта, то есть благодаря тому, что в любом замкнутом контуре (из двух разнородных полупроводников или проводников) возникнет электрический ток, в случае если места спаев отличаются по температуре. Так, один конец термопары (рабочий) погружен в среду, а другой (свободный) – нет. Таким образом, получается, что термопары это относительные датчики и выходное напряжение будет зависеть от разности температур двух частей. И почти не будет зависеть от абсолютных их значений.

                  Выглядеть термопара может так, как показано на рисунке. Это термопара ДТПКХХ4, она измеряет температуры в пределах от -40 до +400. Производит его российская компания Овен.

                  Читайте также:  Атлас конкорд марвел калакатта экстра

                  Диапазон измеряемых с их помощью температур, от -200 до 2200 градусов, и напрямую зависит от используемых в них материалов. Например, термопары из неблагородных металлов – до 1100 °С. Термопары из благородных металлов (платиновая группа) – от 1100 до 1600 градусов. Если необходимо произвести замеры температур свыше этого, используются жаростойкие сплавы (основой служит вольфрам). Как правило используется в комплекте с милливольтметром, а свободный конец (конструктивно выведенный на головку) удален от измеряемой среды с помощью удлиняющего провода. Одним из недостатков термопары является достаточно большая погрешность. Наиболее распространенным способом применения термопар являются электронные термометры.

                  Пирометры

                  Пирометры – бесконтактные датчики, регистрирующие излучение исходящее от нагретых тел. Основным достоинством пирометров (в отличие от предыдущих температурных датчиков) является отсутствие необходимости помещать датчик непосредственно в контролируемую среду. В результате такого погружения часто происходит искажение исследуемого температурного поля, не говоря уже о снижении стабильности характеристик самого датчика.

                  Различают три вида пирометров:

                  1. Флуоресцентные. При измерении температуры посредством флуоресцентных датчиков на поверхность объекта, температуру которого необходимо измерить, наносят фосфорные компоненты. Затем объект подвергают воздействию ультрафиолетового импульсного излучения, в результате которого возникает послеизлучение флуоресцентного слоя, свойства которого зависят от температуры. Это излучение детектируется и анализируется.
                  2. Интерферометрические. Интерферометрические датчики температуры основаны на сравнении свойств двух лучей – контрольного и пропущенного через среду, параметры которой меняются в зависимости от температуры. Чувствительным элементом этого типа датчиков чаще всего выступает тонкий кремниевый слой, на коэффициент преломления которого, а, соответственно, и на длину пути луча, влияет температура.
                  3. Датчики на основе растворов, меняющих цвет при температурном воздействии. В этом типе датчиков-пирометров применяется хлорид кобальта, раствор которого имеет тепловую связь с объектом, температуру которого необходимо измерить. Коэффициент поглощения видимого спектра у раствора хлорида кобальта зависит от температуры. При изменении температуры меняется величина прошедшего через раствор света.

                  Акустические

                  Акустические термодатчики – используются преимущественно для измерения средних и высоких температур. Акустический датчик построен на принципе того, что в зависимости от изменения температуры, меняется скорость распространения звука в газах. Состоит из излучателя и приемника акустических волн (пространственно разнесенных). Излучатель испускает сигнал, который проходит через исследуемую среду, в зависимости от температуры скорость сигнала меняется и приемник после получения сигнала считает эту скорость.

                  Используются для определения температур, которые нельзя измерить контактными методами. Также применяются в медицине для неинвазивных (без операционного проникновения внутрь тела больного) измерения глубинной температуры, например, в онкологии. Недостатками таких измерений является то, что при прикосновении они могут вызывать ответные физиологические реакции, что в свою очередь влечет искажение измерения глубинной температуры. Кроме того, могут возникать отражения на границе «датчик-тело», что также способно вызывать погрешности.

                  Пьезоэлектрические

                  В датчиках этого типа главным элементов является кварцевый пьезорезонатор.

                  Как известно пьезоматериал изменяет свои размеры при воздействии тока(прямой пьезоэффект). На этот пьезоматериал попеременно передается напряжение разного знака, от чего он начинает колебаться. Это и есть пьезорезонатор. Выяснено, что частота колебаний этого резонатора зависит от температуры, это явление и положено в основу пьезоэлектрического датчика температуры.

                  Добавить комментарий

                  Ваш адрес email не будет опубликован. Обязательные поля помечены *