Наиболее распространенными видами компенсирующих устройств, которые выполняют роль местных генераторов реактивной мощности на предприятиях, являются батареи статических конденсаторов и синхронные двигатели. Конденсаторные батареи устанавливают на цеховых общезаводских трансформаторных подстанциях — со стороны низкого или высокого напряжения.
Чем ближе компенсирующее устройство к приемникам реактивной энергии, тем больше звеньев системы электроснабжения разгружается от реактивных токов. Однако при централизованной компенсации, т. е. при установке конденсаторов на трансформаторных подстанциях, конденсаторная мощность используется более полно.
Мощность конденсаторных батарей может быть определена по диаграмме рис. 1.
Рис. 1. Диаграмма мощностей
Q к = P1 х tg φ1 – P2 х tg φ2 ,
где P1 и P2 – нагрузка до и после компенсации, φ1 и φ 2 – соответствующие углы сдвига фаз.
Реактивная мощность, отдаваемая компенсирующей установкой,
где Q 1 и Q2 — реактивная мощность до и после компенсации.
Активная мощность, потребляемая из сети компенсирующим устройством
Величину необходимой мощности конденсаторной батареи можно определить приближенно без учета потерь в конденсаторах, которые составляют 0,003 – 0,0045 кВт/квар
Q к = P (tg φ1 – tg φ2)
Пример расчета и выбор конденсаторных батарей для компенсации реактивной мощности
Необходимо определить номинальную мощность Qк конденсаторной батареи, необходимой для повышения коэффициента мощности до значения 0,95 на предприятии с трехсменным равномерным графиком нагрузки. Среднесуточный расход электроэнергии Аа = 9200 кВтч; Ар = 7400 кварч. Конденсаторы установлены на напряжение 380 В.
P ср = Аа/24 = 9200/24 = 384 кВт.
Мощность конденсаторных батарей
Q к = P (tg φ1 – tg φ2) = 384 (0,8 – 0,32) = 185 квар,
где tg φ1 = Ар/Аа = 7400/9200 = 0,8, tg φ2 = (1 – 0,95 2 )/0,95 = 0,32
Выбираем трехфазные конденсаторы типа KM1-0,38-13 каждый номинальной мощностью 13 квар на напряжение 380 В. Число конденсаторов в батарее
n = Q/13 = 185/13 = 14
Мощность различных конденсаторных установок для среднесуточной нагрузки можно найти в электротехнических справочниках и каталогах производителей.
Методика выбора устройств компенсации реактивной мощности (КРМ) заключается в выборе устройств, позволяющих улучшить коэффициент мощности потребителя до требуемого значения и состоит из следующих этапов:
- выбор места установки устройства КРМ;
- вычисление мощности устройства КРМ;
- проведение необходимых проверок и расчетов;
- собственно выбор устройства КРМ.
Выбор места установки устройства КРМ
В зависимости от особенностей конкретной электроустановки устройства КРМ могут быть установлены, как показано на рис. 1.
Рис.1 – Выбор места установки устройства КРМ
- На вводе на стороне СН.
- На главной распределительной шине.
- На вторичной распределительной шине.
- Индивидуальные конденсаторы нагрузок.
Вычисление мощности устройства КРМ, проведение необходимых проверок и расчетов
В общем случае мощность устройства КРМ определяется по формуле:
- Kc = tgϕ1 — tgϕ2;
- Qc – мощность установки КРМ;
- P – активная мощность;
- tgϕ1 – фактический тангенс угла до применения установки КРМ;
- tgϕ2 – требуемый тангенс угла;
- Кс – расчетный коэффициент.
Для определения коэффициента Кс существует специальная таблица по которой, зная cosϕ1 и cosϕ2, можно определить данный коэффициент, не прибегая к математическим вычислениям.
Способ вычисления активной мощности P, а также проведение необходимых проверок и расчетов устройства КРМ зависит от места его установки. Дальше будет приведен пример ее вычисления в случае установки устройства КРМ на главной распределительной шине.
Выбор устройства КРМ
Устройства КРМ выбираются по следующим техническим характеристикам:
- номинальная мощность;
- номинальное напряжение;
- номинальный ток;
- количество подключаемых ступеней;
- необходимость защиты от резонансных явлений с помощью реакторов.
Необходимая мощность набирается ступенями по 25 и 50 квар, при этом количество ступеней не должно превышать количество выходов контроллера, устанавливаемого в установку КРМ, так как к каждому выходу может быть подключена одна ступень.
Количество выходов контроллера обозначается цифрой, например, RVC6 (фирмы АББ) имеет 6 выходов.
В случае необходимости защиты от резонансных явлений требуется применение защитных реакторов (трехфазных дросселей), в таком случае должны выбираться установки, например типа MNS MCR и LK ACUL (фирмы АББ).
Пример выбора устройств КРМ
Ниже приведен пример выбора устройств КРМ для сети, показанной на рис.2.
Рис.2 – Однолинейная схема ГРЩ без УКРМ
Технические характеристики устройств, образующих сеть, следующие:
- Номинальное напряжение 10 кВ;
- Частота 50 Гц;
- Коэффициент мощности cosϕ = 0,75;
Трансформаторы 1, 2:
- Номинальное напряжение первичной обмотки 10 кВ;
- Номинальное напряжение вторичной обмотки 400 В;
- Номинальная мощность S = 800 кВА;
Данные по кабелям и нагрузкам, подключаемым через вторичные распределительные щиты, представлены в таблице 1. Таблица 1
Выбор места установки устройства КРМ
В качестве места установки устройств КРМ приняты главные распределительные шины, как показано на рис. 3.
Рис.3 – Однолинейная схема ГРЩ с УКРМ
1. Требуемые мощности устройств определим по формуле:
2. Суммарные активные мощности нагрузок, получающих питание от каждого из двух трансформаторов, определим по формуле:
подставив значения из таблицы 1, получим:
- суммарная нагрузка на первый трансформатор:
- суммарная нагрузка на второй трансформатор:
3. Определяем средневзвешенный cosφ для первого трансформатора по формуле:
4. Определяем средневзвешенный cosφ для второго трансформатора по формуле:
5. Определим коэффициент Кс при помощи таблицы 2, учитывая, что требуемый cosφ2 = 0,95.
- для первого устройства КРМ Кс1 = 0,474;
- для второго устройства КРМ Кс2 = 0,526.
6. Зная для каждого трансформатора Кс и P, определим требуемые мощности устройств КРМ:
- для первого трансформатора:
- для второго трансформатора:
Расчет мощности устройства КРМ на основе баланса мощности
7. Определим мощность устройства КРМ по формуле [Л5. с 229]. • для первого трансформатора:
- для второго трансформатора:
- Р – суммарная нагрузка на трансформатор, кВт;
- tgϕ1 – фактический тангенс угла до применения установки КРМ;
- tgϕ2 – требуемый тангенс угла;
8. Определяем tgϕ1 и tgϕ2 зная cosϕ1 и cosϕ2:
- для первого трансформатора tgϕ1:
- для первого и второго трансформатора tgϕ2:
- для второго трансформатора tgϕ1:
Как видно из двух вариантов расчета мощности КРМ, значения требуемой мощности практически не отличаются. Какой из вариантов выбора мощности устройства КРМ использовать, решайте сами. Я принимай мощность устройства КРМ по варианту с определением коэффициента Кс по таблице 2.
Соответственно принятая требуемая мощность устройства КРМ составляет 270 и 300 квар.
9. Рассчитаем номинальный ток устройства КРМ для первого трансформатора:
10. Рассчитаем номинальный ток устройства КРМ для второго трансформатора:
При выборе автоматических выключателей для защиты устройства КРМ, нужно руководствоваться ПУЭ 7-издание пункт 5.6.15. Согласно которому аппараты и токоведущие части в цепи конденсаторной батареи должны допускать длительное прохождение тока, составляющего 130% номинального тока батареи.
Определяем уставку по защите от перегрузки:
- для УКРМ1: 390*1,3 = 507 А;
- для УКРМ2: 434*1,3 = 564 А
Уставка защиты от КЗ должна быть нечувствительна к броску тока. Уставка составляет 10 x In.
Определяем уставку защиты от КЗ:
- для УКРМ1: 390 x 10 = 3900 А;
- для УКРМ2: 434 x 10 = 4340 А
Проверка установки КРМ на отсутствие резонанса
В данном примере проверка установки КРМ на отсутствие резонанса не выполнялась, из-за отсутствия нелинейной нагрузки, а также отсутствия существенных искажений в сети 10 кВ.
В случае же, если у Вас преобладает нелинейная нагрузка, нужно выполнить проверку УКРМ на отсутствие резонанса, а также выполнить расчет качества электрической энергии после установки УКРМ и загрузку батарей статических конденсаторов (БСК).
Для удобства расчета по выбору устройства компенсации реактивной мощности, я к данной статье прикладываю архив со всей технической литературой, которую использовал при выборе УКРМ.
1. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.
2. Учебное пособие по электроустановкам от фирмы АВВ. 2007г.
3. Справочник по компенсации реактивной мощности от фирмы RTR-Energia.
4. Выпуск № 21. Руководство по компенсации реактивной мощности с учетом влияния гармоник от фирмы Schneider Electric. 2008г.
5. Б.Ю.Липкин. Электроснабжение промышленных предприятий и установок, 1990 г.
Поделиться в социальных сетях
Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .
Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.
Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.
Требуется определить сечения кабеля в сети 0,4 кВ для питания электродвигателя типа АИР200М2 мощностью 37.
В данной статье речь пойдет о принципе действия и из каких составных частей состоит УЗО. Устройство.
Основное назначение токоограничивающих реакторов это снижение токов короткого замыкания за.
В данном примере нужно выбрать сечение гибких шин для питания ЗРУ-10 кВ от силового трансформатора типа.
В данной статье я хотел бы рассказать, как ограничивать токи короткого замыкания в сетях напряжением.
Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.
Как выбрать устройство компенсации реактивной мощности. Расчет мощности конденсаторных установок
На нашем сайте представлены устройства компенсации реактивной мощности собственного производства мощностью от 12,6кВар до 1050кВар, конденсаторные установки УКРМ Varset Schneider Electric и АУКРМ Alpimatic Legrand
При подборе конденсаторной установки УКМ 58 необходимо определить общую суммарную мощность устройства КРМ для Вашей электросети.
Сумарная мощность установки обозначим Q
Q= Pхk
Здесь Р – потребляемая активная мощность в цепи.
где k – коэффициент, получаемый из таблицы в соответствии со значениями коэффициентов мощности cos(ф1)
P и K берется из данных по Вашей электросети.
Q можно взять с небольшим запасом.
Например
- Активная мощность в сети 300 кВт.
- Действующий cos(ф) = 0,7 до компенсации.
- Требуемый cos(ф) = 0,96 .
По таблице 1, вычисляем коэффициент 1
Определяем из таблицы значение коэффициента k = 0,73.
Следовательно, требуемая мощность конденсаторной установки УКМ 58 Qc=0,73 x 300 = 219кВАр.
При расчете следует учитывать, что обычно не рекомендуется компенсировать реактивную мощность полностью (до cos(ф)=1), так как при этом возможна перекомпенсация (за счет переменной величины активной мощности нагрузки и других случайных факторов). Обычно стараются достигнуть значения cos(ф) =0,90…0,95
Декущий (действующий)
cos (ф)
Требуемый (желаемый) cos (ф)