Меню Рубрики

Выходные статические характеристики биполярного транзистора

Содержание

Статическим режимом работы транзистора называется такой режим, при котором отсутствует нагрузка в выходной цепи, а изменение входного тока или напряжения не вызывает изменение выходного напряжения Рис.7.

Рис.7. Схема включения транзистора с ОЭ.

Статические характеристики транзисторов бывают двух видов: входные и выходные. На Рис.8. изображена схема установки для измерения статических характеристик транзистора, включённого по схеме с общим эмиттером.

параметров транзистора с ОЭ.

Входная статическая характеристика – это зависимость входного тока IБ от входного напряжения UБЭ при постоянном выходном напряжении UКЭ. Для схемы с общим эмиттером:

Поскольку ветви входной статической характеристики для UКЭ > 0 расположены очень близко друг к другу и практически сливаются в одну, то на практике с достаточной точностью можно пользоваться одной усреднённой характеристикой (Рис.9а). Особенность входной статической характеристики является наличие в нижней части нелинейного участка в районе изгиба U1 (приблизительно 0,2…0,3 В для германиевых транзисторов и 0,3…0,4 В – для кремниевых).

Выходная статическая характеристика – это зависимость выходного тока IК от выходного напряжения UКЭ при постоянном входном токе IБ. Для схемы включения с общим эмиттером:

Из Рис.9б видно, что выходные характеристики представляют собой прямые линии, почти параллельные оси напряжения. Это объясняется тем, что коллекторный переход закрыт независимо от величины напряжения база-коллектор, и ток коллектора определяется только количеством носителей заряда, проходящих из эмиттера через базу в коллектор, т. е. током эмиттера IЭ.

Динамическим режимом работы транзистора называется такой режим, при котором в выходной цепи стоит нагрузочный резистор RК, за счёт которого изменение входного тока или напряжения UВХ будет вызывать изменение выходного напряжения UВЫХ = UКЭ (Рис.10).

Рис.9. Статические характеристики транзистора с ОЭ: а – входные; б – выходные.

Входная динамическая характеристика – это зависимость входного тока IБ от входного напряжения UБЭ при наличии нагрузки. Для схемы с общим эмиттером:

Поскольку в статическом режиме для UКЭ > 0 мы пользуемся одной усреднённой характеристикой, то входная динамическая характеристика совпадает со входной статической (Рис.11а).

Рис.10. Схема включения транзистора в динамическом режиме с ОЭ.

Выходная динамическая (нагрузочная) характеристика представляет собой зависимость выходного напряжения UКЭ от выходного тока IК при фиксированных значениях входного тока IБ (Рис.11б):

Так как это уравнение линейное, то выходная динамическая характеристика представляет собой прямую линию и строится на выходных статических характеристиках по двум точкам, например: А, В на Рис.11б.

Координаты точки В [IK = 0; UКЭ = ЕК ] – на оси UКЭ.

Координаты точки Р [U; I0K ] – соответствуют положению рабочей точки РТ в режиме покоя (при отсутствии сигнала).

Рис.11. Динамические характеристики транзистора с ОЭ: а) – входная; б) – выходная.

Нагрузочная пряма проводится через любые две точки А, В, или Р, координаты которых известны.

В зависимости от состояния p-n переходов транзисторов различают несколько видов его работы – режим отсечки, режим насыщения, предельный и линейный режимы (Рис.11).

Режим отсечки. Это режим, при котором оба его перехода закрыты – транзистор заперт. Ток базы в этом случае равен нулю. Ток коллектора будет равен обратному току IК0, а напряжение UКЭ = EК.

Режим насыщения – это режим, когда оба перехода – и эмиттерный и коллекторный открыты, а в транзисторе происходит свободный переход носителей зарядов. При этом ток базы будет максимальный, ток коллектора будет равен току коллектора насыщения, а напряжение между коллектором и эмиттером стремиться к нулю.

Предельные режимы – это режимы, работа в которых ограничена максимально-допустимыми параметрами: IК доп, UКЭ доп, PК доп (Рис.11б) и IБ нас, UБЭ доп (Рис.11а) и связана с перегревом транзистора или выхода его из строя.

Линейный режим – это режим, в котором обеспечивается достаточная линейность характеристик и он может использоваться для активного усиления.

Читайте также:  Договор поставки электроэнергии образец

Дата добавления: 2016-07-05 ; просмотров: 21539 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Характеристики биполярного транзистора в основном нелинейные и выражаются сложными формулами, неудобными на практике. Поэтому проще и нагляднее использовать графики зависимости параметров транзистора между собой . Так же удобнее изображать измеренные показания параметров конкретного транзистора графическим способом.

Статические характеристики биполярного транзистора c ОЭ

Статические характеристики биполярного транзистора отражают зависимость между напряжениями и токами на его входе и выходе при отсутствии нагрузки.
Эти характеристики будут разные в зависимости от выбранного способа включения транзистора. В основном применяются характеристики со схемами включения с общей базой (ОБ) и общим эмиттером (ОЭ).

Для снятия входных и выходных характеристик биполярного транзистора с ОЭ можно использовать схему как на рис.1 . В ней при помощи потенциометров R1 и R2 подаются нужные напряжения в базовую и коллекторную цепи с определенным током.

Входные характеристики биполярного транзистора

На рис.2 , для сравнения, показаны входные характеристики биполярного транзистора с ОЭ германиевого и кремневого транзисторов. Они выражают (при определенном напряжении между коллектором и эмиттером Uкэ ) зависимость базового тока Iб от приложенного между базой и эмиттером напряжением Uбэ . По форме они нелинейны и похожи на характеристики диодов, т.к. эмиттерный переход транзистора можно представить в виде диода включенным в прямом направлении.
Для каждого типа транзисторов при увеличении коллекторного напряжения характеристики немного смещаются в сторону увеличения базового напряжения, но на практике это увеличение не учитывается.
Из графиков еще видно , что в схеме с ОЭ базо-эмиттерное напряжение в германиевых транзисторах не превышает 0,4В, а в кремниевых – 0,8В. При превышении этих входных напряжений токи, проходящие через транзистор, могут стать недопустимо большими, которые приведут к пробою транзистора.

Так как входная характеристика биполярного транзистора нелинейна, значит и входное сопротивление, зависящее от входного напряжения и тока, тоже нелинейно.
Для примера определим базовый и коллекторный токи транзистора МП42Б с коэффициентом усиления β=50 ( рис.3 ) в разных точках характеристики.
В точке А базовый ток Iб=0,02mA и тогда коллекторный ток равен
Iк=β•Iб=50•0.02=1mA.
Можно наоборот определить на графике по известному коллекторному току Iк=13mA базовое напряжение Uэб . Базовый ток при таком Iк равен:
Iб=Iк/β=13/50=0,26mA.
Значит Uэб=0,25В ( точка В ).
На этой же характеристике так же можно найти входное сопротивление транзистора для постоянного и переменного (дифференциально динамического) токов.
Сопротивление по постоянному току относится к постоянной составляющей сигнала, а по переменному току – к переменной составляющей сигнала. Входное сопротивление по переменному току имеет существенное значение для согласования между собой транзисторных каскадов.
Сопротивление по постоянному току определяется по закону Ома:
R_=U/I .
В точке А на графике оно будет равно:
Rвх_= Uбэ/Iб = 0,1/ 0,02•10ˉ³ = 5 кОм.
Таким же образом находим сопротивление в точке Б – Rвх_= 1,6 кОм, и в точке В – Rвх_= 1 кОм.
Сопротивление по переменному току находим тоже по закону Ома, но в только в дифференциальной форме:
Rвх

= ∆U/∆I ,
где ∆U ) и ∆I ) – приращения напряжения и тока возле выбранной точки.
Для примера определим сопротивление по переменному току в точке Б ) ( рис.4 ). Задаем приращения (желтый треугольник на рисунке):
∆Uбэ = 0,225-0,175 = 0,05 В,
∆Iэ = 0,16-0,06 = 0,1 mA.
Тогда сопротивление по переменному току равно:
Rвх

=0,05/0,1•10ˉ³ = 500 Ом
Аналогично вычислим сопротивление по переменному току в точке А – Rвх

= 4кОм, а в точке В – 400 Ом. Обычно в схеме с ОЭ это сопротивление бывает в пределах от 500 Ом до 5 кОм.

Выходные характеристики биполярного транзистора

Выходные характеристики биполярного транзистора показывают зависимость коллекторного тока Iк ) от выходного напряжения Uэк ) при определенном базовом токе Iб .

На рис.5 приведено семейство выходных характеристик транзистора.
На графике видно, что выходные характеристики нелинейны, и что при увеличении напряжения Uэк от нуля до 0,4÷0,8 вольт коллекторный ток увеличивается быстро, а затем приращение уже мало и почти не зависит от величины Uэк , а зависит от базового тока. Отсюда можно сделать вывод: в основном базовый ток управляет коллекторным током.

Читайте также:  Детектор bosch gms 100 m professional

По выходной характеристике транзистора МП42Б ( рис.6 ) определим в точке Б коллекторный ток при Uкэ = 5,7 В и Iб = 40 μA. Он будет равен Iк = 4,5 mA.
А для точки А ток базы при коллекторном напряжении Uкэ = 5,7 В и Iк = 8 mA будет Iб = 80 μA.

Так же по выходной характеристике этого транзистора можно найти выходные сопротивления для постоянного и переменного токов.
Сопротивление по постоянному току в точке Б будет равно:
Rвых_= Uкэ/Iк = 5,7/4,5•10ˉ³ = 1,3 кОм.
Сопротивление по переменному току при приращении:
∆U = 8-3 = 5 В; ∆I = 4,5-4 = 0,5 mA
равно:
Rвых

= ∆U/∆I = 5/0,5•10ˉ³ = 10 кОм.
Это cопротивление может достигать 50 кОм.

Статистические характеристики биполярного транзистора с ОБ.

Для снятия входных и выходных характеристик биполярного транзистора с ОБ используют схему как на рис7 . В ней при помощи потенциометров R1 и R2 подаются нужные напряжения в базовую и коллекторную цепи с определенным током.

Входные характеристики биполярного транзистора

Входные характеристики биполярного транзисторат с ОБ показывают, как зависит эмиттерный ток Iэ от напряжения между эмиттером и базой Uэб при выбранном напряжении Uкб ( рис.8 ) для транзисторов разной проводимости.
Сравнив с входной характеристикой биполярного транзистора с ОЭ видим, что они похожи, но и имеют различия.
Это, во-первых, при увеличении коллекторного напряжения ветви характеристик германиевых и кремниевых транзисторов смещаются влево, Во-вторых, ток эмиттера в этом случае намного больше чем базовый ток при включении с ОЭ и масштаб измерения по оси ординат уже не в микроамперах, а в милиамперах.
По входным характеристикам биполярного транзистора с ОБ можно определить такие же параметры как и с ОЭ: зависимость Iэ от Uэб , входные сопротивления Rвх_ и Rвх

.
По параметрам входной характеристики ( рис.9 ) найдем входные сопротивления в точке А :
∆Uэб= 0,225-0,175 = 0,05 В,
∆Iэ = 16- 6 = 10 mA.
Rвх_= Uбэ/Iэ = 0,2/10•10ˉ³ =20 Ом,
Rвх

= ∆Uэб/∆Iэ =0,05/10•10ˉ³ = 5 Ом.
Вывод: входные сопротивления в схеме с ОБ на много меньше чем с ОЭ и обычно не превышают 100 Ом.

Выходные характеристики биполярного транзистора

На рис.10 показано семейство выходных характеристик биполярного транзистора МП42Б которые выражают зависимость коллекторного тока Iк от выходного напряжения Uбк при определенном эмиттерном токе Iэ . Они чем то похожи на выходные характеристики с ОЭ, но имеют и большие различия.
Одним из отличий является то, что коллекторный ток протекает даже тогда, когда коллекторное напряжение равно нулю. Причина в наличии источника тока в цепи эмиттера.
Второе отличие – выходные характеристики в схеме с ОБ почти горизонтальны, а это значит, что выходное сопротивление больше чем при ОЭ и может достигать по переменному току до 2 МОм.

Статические характеристики прямой передачи по току биполярного транзистора

По характеристике прямой передачи транзистора по току, которая представляет собой связь между входным и выходным токами, можно определить коэффициенты усиления по току в схеме с ОЭ и ОБ как на рис.11
.Коэффициент усиления по току с ОЭ равен:
β=∆Iк/∆Iб
где ∆Iк=2,8-2=0,8 mA;
∆Iб=30-20=10 μА.
β=0,8/10•10ˉ³= 80.
Коэффициент усиления по току с ОБ равен:
α=∆Iк/∆Iэ
где ∆Iк=2,8-2=0,8 mA;
∆Iэ=3-2=1 mA;
α=0,8/1=0,8.
Можно сделать вывод, что при включении транзистора с ОБ усиление по току почти не происходит.

Как уже отмечалось в п. 3.1, транзистор в электрических схемах используется в качестве четырехполюсника, характеризующегося четырьмя величинами: входным и выходным напряжениями и входным и выходным токами ( uВХ, uВЫХ, iВХ, iВЫХ). Функциональные зависимости между этими величинами называются статическими характеристиками транзистора, Чтобы установить функциональные связи между указанными величинами, необходимо две из них взять в качестве независимых переменных, а две оставшиеся выразить в виде функций этих независимых переменных. Как правило, применительно к биполярному транзистору в качестве независимых переменных выбирают входной ток и выходное напряжение. В этом случае входное напряжение и выходной ток выражаются следующим образом:

Читайте также:  Заказать опломбировку счетчика холодной воды

На практике удобнее использовать функции одной переменой. Для перехода к таким функциям необходимо вторую переменную, называемую в этом случае параметром характеристики, поддерживать постоянной. В результате получаются четыре типа характеристик транзистора:

; (3.31)

характеристика обратной передачи ( связи) по напряжению:

; (3.32)

характеристика (прямой) передачи тока, называемая также управляющей или передаточной характеристикой:

; (3.33)

. (3.34)

Статические характеристики транзистора могут задаваться соответствующими аналитическим выражениями, а могут быть представлены графически. Несколько характеристик одного типа, полученные при различных значениях параметра, образуют семейство характеристик. Семейства входных и выходных характеристик транзистора считаются основными и приводятся в справочниках, с их помощью легко могут быть получены два других семейства характеристик. В различных схемах включения транзистора в качестве входных и выходных токов и напряжений выступают токи, протекающие в цепях различных электродов, и напряжения, приложенные между различными электродами. Поэтому конкретный вид статических характеристик зависит от схемы включения транзистора. Рассмотрим статические характеристики транзистора в наиболее распространенных схемах ОБ и ОЭ.

Статические характеристики в схеме об

В схеме с ОБ (см. рис. 3.3,а) входным током является ток эмиттера iЭ, а выходным – ток коллектора iК, соответственно, входным напряжением является напряжение uЭБ, а выходным – напряжение uКБ.

Входная характеристика в схеме ОБпредставляет собой зависимость

.

Однако, реально в справочниках приводится обратная зависимость

.

Семейство входных характеристик кремниевого n-p-n-транзистора приведено на рис. 3.20. Выражение для идеализированной входной характеристики транзистора в активном режиме имеет вид:

Следует отметить, что в выражении (3.35) отсутствует зависимость токаiЭ от напряжения на коллекторном переходе uКБ. Реально такая зависимость существует и связана она с эффектом Эрли. Как показано в п. 3.3, при увеличении обратного напряжения uКБ. сужается база транзистора , в результате чего несколько увеличивается ток эмиттера iЭ. Увеличение тока iЭ с ростом uКБ. отражается небольшим смещением входной характеристики в сторону меньших напряжений  uЭБ.  – см. рис. 3.20. Режиму отсечки формально соответствует обратное напряжение uЭБ.>0 , хотя реально эмиттерный переход остается закрытым ( iЭ  0) и при прямых напряжениях  uЭБ меньших порогового напряжения.

Выходная характеристика транзистора в схеме ОБ представляет собой зависимость

.

Семейство выходных характеристик n-p-n-транзистора приведена на рис. 3.21. Выражение дляидеализированной выходной характеристики в активном режиме имеет вид: iК = · iЭ+ IКБ0. (3.36)

Всоответствие с этим выражением ток коллектора определяется только током эмиттера и не зависит от напряженияuКЭ. Реально (см. рис. 3.21) имеет место очень небольшой рост iК при увеличении обратного напряжения uКБ, связанный с эффектом Эрли. В активном режиме характеристики практически эквидистантны (расположены на одинаковом расстоянии друг от друга), лишь при очень больших токах эмиттера из-за уменьшения коэффициента передачи тока эмиттера  эта эквидистантность нарушается, и характеристики несколько приближаются друг к другу. При iЭ= 0 в цепи коллектора протекает тепловой ток ( iК= IКБ0). В режиме насыщения на коллекторный переход подается прямое напряжение uКБ, большее порогового значения, открывающее коллекторный переход. В структуре транзистора появляется инверсный сквозной поток электронов, движущийся из коллектора в эмиттер навстречу нормальному сквозному потоку, движущемуся из эмиттера в коллектор. Инверсный поток очень резко увеличивается с ростом  uКБ. , в результате чего коллекторный ток уменьшается и очень быстро спадает до нуля – см. рис. 3.21.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *