Меню Рубрики

Закон кулона описывает силы взаимодействия электрических зарядов

Содержание

Закон Кулона количественно описывает взаимодействие заряженных тел. Он является фундаментальным законом, то есть установлен при помощи эксперимента и не следует ни из какого другого закона природы. Он сформулирован для неподвижных точечных зарядов в вакууме. В реальности точечных зарядов не существует, но такими можно считать заряды, размеры которых значительно меньше расстояния между ними. Сила взаимодействия в воздухе почти не отличается от силы взаимодействия в вакууме (она слабее менее чем на одну тысячную).

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

На основании многочисленных опытов Кулон установил следующий закон:

Сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними. Она направлена вдоль прямой, соединяющей заряды, и является силой притяжения, если заряды разноименные, и силой отталкивания, если заряды одноименные.

Если обозначить модули зарядов через |q1| и |q2|, то закон Кулона можно записать в следующей форме:

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц.

Полная формула закона Кулона:

( F ) — Сила Кулона

( q_1 q_2 ) — Электрический заряд тела

( r ) — Расстояние между зарядами

( varepsilon_0 = 8,85*10^ <-12>) — Электрическая постоянная

( varepsilon ) — Диэлектрическая проницаемость среды

( k = 9*10^9 ) — Коэффициент пропорциональности в законе Кулона

Силы взаимодействия подчиняются третьему закону Ньютона: ( vec_<12>=vec_ <21>) . Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках.

Электрический заряд обычно обозначается буквами q или Q .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Отметим, чтоб выполнялся закон Кулона необходимо 3 условия:

  • Точечность зарядов — то есть расстояние между заряженными телами много больше их размеров.
  • Неподвижность зарядов. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд .
  • Взаимодействие зарядов в вакууме.

В Международной системе СИ за единицу заряда принят кулон (Кл) .

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А . Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Заряженный шарик приводят в соприкосновение с точно таким же незаряженным шариком. Находясь на расстоянии ( r = 15 ) см, шарики отталкиваются с силой ( F = 1 ) мН. Каков был первоначальный заряд заряженного шарика?

При соприкосновении заряд разделится ровно пополам (шарики одинаковые).По данной силе взаимодействия можем определить заряды шариков после соприкосновения (не забудем, что все величины надо представить в единицах СИ – ( F = 10^ <-3>) Н, ( r = 0.15 ) м):

Читайте также:  Диван кровать угловой фото

Тогда до соприкосновения заряд заряженного шарика был вдвое больше: ( q_1=2cdot 5cdot 10^<-8>=10^ <-7>)

Взаимодействия электрических зарядов исследовали ещё до Шарля Кулона. В частности, английский физик Кавендиш в своих исследованиях пришёл к выводу, что неподвижные заряды при взаимодействии подчиняются определённому закону. Однако он не обнародовал своих выводов. Повторно закон Кулона был открыт французским физиком, именем которого был назван этот фундаментальный закон.

Рисунок 1. Закон Кулона

История открытия

Эксперименты с заряженными частицами проводили много физиков:

  • Г. В. Рихман;
  • профессор физики Ф. Эпинус;
  • Д. Бернулли;
  • Пристли;
  • Джон Робисон и многие другие.

Все эти учёные очень близко подошли к открытию закона, но никому из них не удалось математически обосновать свои догадки. Несомненно, они наблюдали взаимодействие заряженных шариков, но установить закономерность в этом процессе было непросто.

Кулон проводил тщательные измерения сил взаимодействия. Для этого он даже сконструировал уникальный прибор – крутильные весы (см. Рис. 2).

Рис. 2. Крутильные весы

У придуманных Кулоном весов была чрезвычайно высокая чувствительность. Прибор реагировал на силы порядка 10 -9 Н. Коромысло весов, под действием этой крошечной силы, поворачивалось на 1 º . Экспериментатор мог измерять угол поворота, а значит и приложенную силу, пользуясь точной шкалой.

Благодаря гениальной догадке учёного, идея которой состояла в том, что при соприкосновении заряженного и незаряженного шариков, электрический заряд делился между ними поровну. На это сразу реагировали крутильные весы, коромысло которых поворачивалось на определённый угол. Заземляя неподвижный шарик, Кулон мог нейтрализовать на нём полученный заряд.

Таким образом, учёный смог уменьшать первоначальный заряд подвижного шарика кратное число раз. Измеряя угол отклонения после каждого деления заряда, Кулон увидел закономерность в действии отталкивающей силы, что помогло ему сформулировать свой знаменитый закон.

Формулировка

Кулон исследовал взаимодействие между шариками, ничтожно малых размеров, по сравнению с расстояниями между ними. В физике такие заряженные тела называются точечными. Другими словами, под определение точечных зарядов подпадают такие заряженные тела, если их размерами, в условиях конкретного эксперимента, можно пренебречь.

Для точечных зарядов справедливо утверждение: Силы взаимодействия между ними направлены вдоль линии, проходящей через центры заряженных тел. Абсолютная величина каждой силы прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними (см. рис. 3). Данную зависимость можно выразить формулой: |F1|=|F2|=(ke*q1*q2) / r 2

Рис. 3. Взаимодействие точечных зарядов

Остаётся добавить, что векторы сил направлены друг к другу для разноименных зарядов, и противоположно, в случае с одноимёнными зарядами. То есть между разноимёнными зарядами действует электрическое притяжение, а между одноимёнными – отталкивание.

Таким образом, закон Кулона описывает взаимодействие между двумя электрическими зарядами, которое лежит в основе всех электромагнитных взаимодействий.

Для того чтобы действовал сформулированный выше закон, необходимо выполнение следующий условий:

  • соблюдение точечности зарядов;
  • неподвижность заряженных тел;
  • закон выражает зависимости между зарядами в вакууме.

Границы применения

Описанная выше закономерность при определённых условиях применима для описания процессов квантовой механики. Правда, закон Кулона формулируется без понятия силы. Вместо силы используется понятие потенциальной энергии кулоновского взаимодействия. Закономерность получена путём обобщения экспериментальных данных.

Следует отметить, что на сверхмалых расстояниях (при взаимодействиях элементарных частиц) порядка 10 — 18 м проявляются электрослабые эффекты. В этих случаях закон Кулона, строго говоря, уже не соблюдается. Формулу можно применять с учётом поправок.

Читайте также:  Замена картриджей гейзер люкс

Нарушение закона Кулона наблюдается и в сильных электромагнитных полях (порядка 10 18 В/м), например поблизости магнитаров (тип электронных звёзд). В такой среде кулоновский потенциал уменьшается не обратно пропорционально, а экспоненциально.

Кулоновские силы подпадают под действие третьего закона Ньютона: F1 = – F2. Они используются для описания законов всемирного тяготения. В этом случае формула приобретает вид: F = ( m1* m2 ) / r 2 , где m1 и m2 – массы взаимодействующих тел, а r – расстояние между ними.

Закон Кулона стал первым открытым количественным фундаментальным законом, обоснованным математически. Его значение в исследованиях электромагнитных явлений трудно переоценить. С момента открытия и обнародования закона Кулона началась эра изучения электромагнетизма, имеющего огромное значение в современной жизни.

Коэффициент k

Формула содержит коэффициент пропорциональности k, который для согласования соразмерностей в международной системе СИ. В этой системе единицей измерения заряда принято называть кулоном (Кл) – заряд, проходящий за 1 секунду сквозь проводник, где силы тока составляет 1 А.

Коэффициент k в СИ выражается следующим образом: k = 1/4πε0, где ε0 – электрическая постоянная: ε0 = 8,85 ∙10 -12 Кл 2 /Н∙м 2 . Выполнив несложные вычисления, мы находим: k = 9×10 9 H*м 2 / Кл 2 . В метрической системе СГС k =1.

На основании экспериментов было установлено, что кулоновские силы, как и принцип суперпозиции электрических полей, в законах электростатики описывают уравнения Максвелла.

Если между собой взаимодействуют несколько заряженных тел, то в замкнутой системе результирующая сила этого взаимодействия равняется векторной сумме всех заряженных тел. В такой системе электрические заряды не исчезают – они передаются от тела к телу.

Закон Кулона в диэлектриках

Выше было упомянуто, что формула, определяющая зависимость силы от величины точечных зарядов и расстояния между ними, справедлива для вакуума. В среде сила взаимодействия уменьшается благодаря явлению поляризации. В однородной изотопной среде уменьшение силы пропорционально определённой величине, характерной для данной среды. Эту величину называют диэлектрической постоянной. Другое название – диэлектрическая проницаемость. Обозначают её символом ε. В этом случае k = 1/4πεε0.

Диэлектрическая постоянная воздуха очень близка к 1. Поэтому закон Кулона в воздушном пространстве проявляется так же как в вакууме.

Интересен тот факт, что диэлектрики могут накапливать электрические заряды, которые образуют электрическое поле. Проводники лишены такого свойства, так как заряды, попадающие на проводник, практически сразу нейтрализуются. Для поддержания электрического поля в проводнике необходимо непрерывно подавать на него заряженные частицы, образуя замкнутую цепь.

Применение на практике

Вся современная электротехника построена на принципах взаимодействия кулоновских сил. Благодаря открытию Клоном этого фундаментального закона развилась целая наука, изучающая электромагнитные взаимодействия. Понятие термина электрического поля также базируется на знаниях кулоновских сил. Доказано, что электрическое поле неразрывно связано с зарядами элементарных частиц.

Грозовые облака не что иное как скопление электрических зарядов. Они притягивают к себе индуцированные заряды земли, в результате чего появляется молния. Это открытие позволило создавать эффективные молниеотводы для защиты зданий и электротехнических сооружений.

На базе электростатики появилось много изобретений:

  • конденсатор;
  • различные диэлектрики;
  • антистатические материалы для защиты чувствительных электронных деталей;
  • защитная одежда для работников электронной промышленности и многое другое.

На законе Кулона базируется работа ускорителей заряженных частиц, в частности, функционирование Большого адронного коллайдера (см. Рис. 4).

Рис. 4. Большой адронный коллайдер

Ускорение заряженных частиц до околосветовых скоростей происходит под действием электромагнитного поля, создаваемого катушками, расположенными вдоль трассы. От столкновения распадаются элементарные частицы, следы которых фиксируются электронными приборами. На основании этих фотографий, применяя закон Кулона, учёные делают выводы о строении элементарных кирпичиков материи.

Читайте также:  Глубина встроенной посудомоечной машины

Использованная литература:

  1. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004.
  2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов.
  3. Ландсберг Г. С. Элементарный учебник физики. Том II. Электричество и магнетизм.

В 1785 г. Кулон экспериментально установил зависимость силы взаимодействия зарядов от их величины, знака и расстояния между ними.

Сила взаимодействия двух точечных зарядов, находящихся в вакууме, прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними, направлена вдоль прямой линии, соединяющей эти заряды (рис. 1.1)..

В СИ закон Кулона запишем в виде

, (1.2)

где о = 8,8510  12 .

Согласно третьего закона Ньютона

Знак силы взаимодействия зарядов зависит от знака этих зарядов. Притяжению соответствует знак «  », разноименные заряды притягиваются, отталкиванию  « + », одноименные заряды отталкиваются (рис. 1.2, а, б).

По абсолютной величине закон Кулона

. (1.3)

, (1.4)

где   диэлектрическая проницаемость среды,

. (1.5)

В СИ заряд измеряют в кулонах (Кл).

На основании экспериментальных данных установлено, что закон Кулона справедлив для расстояний от 10  15 м до нескольких километров, а возможно и до бесконечности.

1.3. Электрическое поле

Взаимодействие между зарядами (согласно современным представлениям) осуществляется посредством электрического поля. Если заряды неподвижны, то поле называют электростатическим.

Любой электрический заряд q создает в окружающем его пространстве электрическое поле (изменяет свойства этого пространства). Электрическое поле проявляет себя в том, что помещенный в любую точку этого поля «пробный» заряд испытывает действие кулоновской силы со стороны этого поля. Основной количественной характеристикой электрического поля является вектор напряженности .

Напряженность электростатического поля  сила, действующая на единичный, положительный точечный неподвижный пробный заряд.

Замечание: пробный заряд qo должен быть достаточно малым, чтобы его внесение в электрическое поле не вызывало заметного искажения его.

На основании опытов установлено, что напряженность электрического поля и кулоновская сила, действующая на внесенный в это поле пробный заряд, связаны соотношением

, (1.6)

где  вектор напряженности электростатического поля в данной точке.

Напряженность поля неподвижного точечного заряда q в вакууме на расстоянии r от него

(1.7)

, (1.8)

где r  расстояние от заряда q, создающего электрическое поле, до точки пространства, в которой определяется напряженность этого поля (рис. 1.3).

Если заряд находится в безграничной среде с диэлектрической проницаемостью , то

. (1.9)

В электрическом поле, создаваемом неподвижным точечным зарядом, сила, действующая на внесенный пробный заряд, не зависит от того, покоится пробный заряд или движется. Это относится и к системе неподвижных зарядов.

Напряженность в СИ измеряется в вольтах на метр (В/м).

Если мы имеем систему точечных неподвижных зарядов, то можно определить напряженность результирующего электрического поля в произвольной точке этого поля (принцип суперпозиции).

Вектор напряженности поля системы точечных неподвижных зарядов равен векторной сумме напряженности полей, созданной каждым из зарядов в отдельности, т. е.

(1.10)

или , (1.11)

где i  вектор напряженность поля, созданного i м точечным зарядом на расстоянии ri от него.

“>

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *