Меню Рубрики

Закон ома и его практическое применение

Содержание

Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.

Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.

Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.

Формула закона Ома записывается в следующем виде:

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза

И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.

Рассмотрим простейший случай применения закона Ома. Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:

Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.

Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.

Где и когда можно применять закон Ома?

Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).

Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.

Значение Закона Ома

Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении.

Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.

Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.

Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:

Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

Принцип работы одного из основополагающих законов электротехники хочется начать объяснять с аллегории — показа небольшого карикатурного изображения 1 из трех человечков под именами «Напряжение U», «Сопротивление R» и «Ток I».

На нем видно, что «Ток» пытается пролезть через сужение в трубе, которое «Сопротивление» усердно затягивает. В то же время «Напряжение» прилагает максимально возможное усилие для прохождения, проталкивания «Тока».

Этот рисунок напоминает, что электрический ток — это упорядоченное движение заряженных частиц в определенной среде. Передвижение их возможно под действием приложенной внешней энергии, создающей разность потенциалов — напряжение. Однако, внутренние силы проводников и элементов схемы уменьшают величину тока, оказывают сопротивление его перемещению.

Читайте также:  Всепроникающая среда в которой распространяются электромагнитные волны

Рассмотрим простую схему 2, поясняющую действие закона Ома для участка электрической цепи постоянного тока.

В качестве источника напряжения U используем аккумуляторную батарею, которую подключим к сопротивлению R толстыми и одновременно короткими проводами в точках А и В. Допустим, что провода не влияют на величину прохождения тока I к резистору R.

Формула (1) выражает соотношения между сопротивлением (омы), напряжением (вольты) и током (амперы). Ее называют законом Ома для участка цепи. Кружок под формулой облегчает ее запоминание и пользование для выражения каждого из составляющих параметров U, R или I (U расположено сверху над черточкой, а R и I — снизу).

Если надо определить один из них, то мысленно закрываем его и работаем с двумя оставшимися, выполняя арифметические действия. Когда величины расположены на одной строчке, то их перемножаем. А в случае расположения их на разных уровнях выполняем деление верхнего на нижний.

Эти соотношения показаны на формулах 2 и 3 рисунка 3 ниже.

В этой схеме для измерения тока используется амперметр, который соединен последовательно с нагрузкой R, а напряжения — вольтметр, подключенный параллельно точкам 1 и 2 резистора. Учитывая конструктивные особенности приборов, допустим, что амперметр не влияет на величину тока в схеме, а вольтметр — напряжения.

Определение сопротивления с помощью закона Ома

Пользуясь показаниями приборов (U=12 В, I=2,5 А) можно по формуле 1 определить величину сопротивления R=12/2,5=4,8 Ом.

На практике этот принцип заложен в работу измерительных приборов — омметров, определяющих активное сопротивление различных электрических устройств. Поскольку они могут быть настроены на замеры различных диапазонов величин, то их соответственно подразделяют на микроомметры и миллиомметры, работающие с малыми сопротивлениями и тера-, гиго- и мегаомметры — измеряющие очень большие значения.

Для конкретных условий эксплуатации их выпускают:

Принцип работы омметра

Для выполнения замеров обычно используются магнитоэлектрические приборы, хотя в последнее время широко внедряются электронные (как аналоговые, так и цифровые).

В омметре магнитоэлектрической системы используется токоограничивающий резистор R, пропускающий через себя только миллиамперы и чувствительная измерительная головка (миллиамперметр). Она реагирует на протекание малых токов через прибор за счет взаимодействия двух электромагнитных полей от постоянного магнита N-S и поля, создаваемого током, проходящим через обмотку катушки 1 с токопроводящей пружинкой 2.

В результате взаимодействия сил магнитных полей происходит отклонение стрелки прибора на определенный угол. Шкала головки для облегчения работы сразу проградуирована в омах. При этом используется выражение сопротивления через ток по формуле 3.

У омметра для обеспечения точных замеров должно поддерживаться стабилизированное значение подаваемого напряжения от батареи питания. С этой целью применяется калибровка посредством использования добавочного регулировочного резистора R рег. С его помощью до начала измерения на схему ограничивается подача излишнего напряжения от источника, выставляется строго стабильная, нормируемая величина.

Определение напряжения с помощью закона Ома

Во время работ с электрическими схемами бывают случаи, когда необходимо узнать падение напряжения на каком-то элементе, например, резисторе, а известно его сопротивление, которое обычно маркируется на корпусе, и проходящий сквозь него ток. Для этого не обязательно подключать вольтметр, а достаточно воспользоваться расчетами по формуле 2.

В нашем случае для рисунка 3 проведем расчеты: U=2,5·4,8 =12 В.

Определение тока с помощью закона Ома

Этот случай описывает формула 3. Его используют для расчета нагрузок в электрических схемах, выбора сечений проводников, кабелей, предохранителей или защитных автоматов.

В нашем примере расчет выглядит так: I=12/4,8=2,5 А.

Этот способ в электротехнике используют для исключения работы определенных элементов из схемы без их демонтажа. Для этого на ненужном резисторе замыкают накоротко проводником входящую и отходящую клеммы (на рисунке 1 и 2) — шунтируют.

В результате ток схемы выбирает для себя путь с меньшим сопротивлением через шунт и резко возрастает, а напряжение зашунтированного элемента падает до нуля.

Читайте также:  220 Вольт в балашихе адрес

Этот режим является частным случаем шунтирования и, в общем-то, показан на рисунке выше, когда закоротка устанавливается на выходные клеммы источника. При его возникновении создаются очень опасные большие токи, способные поражать людей и сжигать не защищенное электрооборудование.

Для борьбы со случайно возникающими замыканиями в электрической сети используют защиты. На них выставляют такие уставки, которые не мешают работать схеме в нормальном режиме. Они отключают питание только при аварийных случаях.

Например, если ребенок по неосторожности всунет в домашнюю розетку проволоку, то правильно настроенный автоматический выключатель вводного квартирного щита практически моментально отключит электроснабжение.

Все, что описано выше, относится к закону Ома для участка цепи постоянного тока, а не полной схемы, где процессов может быть значительно больше. Следует представлять, что это только небольшая часть применения его в электротехнике.

Закономерности, выявленные знаменитым ученым Георгом Симоном Омом между током, напряжением и сопротивлением по-разному описываются в различных средах и цепях переменного тока: однофазных и трехфазных.

Вот основные формулы, выражающие соотношения электрических параметров в металлических проводниках.

Более сложные формулы для проведения специальных расчетов закона Ома на практике.

Как видим, исследования, которые провел гениальный ученый Георг Симон Ом, имеют огромное значение даже в наше время бурного развития электротехники и автоматики.

В природе существует два основных вида материалов, проводящие ток и непроводящие (диэлектрики). Отличаются эти материалы наличием условий для перемещения в них электрического тока (электронов).

Из токопроводящих материалов (медь, алюминий, графит, и многие другие), делают электрические проводники, в них электроны не связаны и могут свободно перемещаться.

В диэлектриках электроны привязаны к атомам намертво, поэтому ток в них течь не может. Из них делают изоляцию для проводов, детали электроприборов.

Для того чтобы электроны начали перемещаться в проводнике (по участку цепи пошел ток), им нужно создать условия. Для этого в начале участка цепи должен быть избыток электронов, а в конце – недостаток. Для создания таких условий используют источники напряжения – аккумуляторы, батарейки, электростанции.

Формула Закона Ома

В 1827 году Георг Симон Ом открыл закон силы электрического тока. Его именем назвали Закон и единицу измерения величины сопротивления. Смысл закона в следующем.

Чем толще труба и больше давление воды в водопроводе (с увеличением диаметра трубы уменьшается сопротивление воде) – тем больше потечет воды. Если представить, что вода это электроны (электрический ток), то, чем толще провод и больше напряжение (с увеличением сечения провода уменьшается сопротивление току) – тем больший ток будет протекать по участку цепи.

Сила тока, протекающая по электрической цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна величине сопротивления цепи.

где I – сила тока, измеряется в амперах и обозначается буквой А; U – напряжение, измеряется в вольтах и обозначается буквой В; R – сопротивление, измеряется в омах и обозначается .

Если известны напряжение питания U и сопротивление электроприбора R, то с помощью вышеприведенной формулы, воспользовавшись онлайн калькулятором, легко определить силу протекающего по цепи тока I.

Онлайн калькулятор для определения силы тока
Напряжение, В:
Сопротивление, Ом:

С помощью закона Ома рассчитываются электрические параметры электропроводки, нагревательных элементов, всех радиоэлементов современной электронной аппаратуры, будь то компьютер, телевизор или сотовый телефон.

Применение закона Ома на практике

На практике часто приходится определять не силу тока I, а величину сопротивления R. Преобразовав формулу Закона Ома, можно рассчитать величину сопротивления R, зная протекающий ток I и величину напряжения U.

Онлайн калькулятор для определения величины сопротивления
Напряжение, В:
Величина тока, А:

Величину сопротивления может понадобится рассчитать, например, при изготовлении блока нагрузок для проверки блока питания компьютера. На корпусе блока питания компьютера обычно есть табличка, в которой приведен максимальный ток нагрузки по каждому напряжению. Достаточно в поля калькулятора ввести данные величины напряжения и максимальный ток нагрузки и в результате вычисления получим величину сопротивления нагрузки для данного напряжения. Например, для напряжения +5 В при максимальной величине тока 20 А, сопротивление нагрузки составит 0,25 Ом.

Читайте также:  Дизайн интерьера отделочные материалы

Формула Закона Джоуля-Ленца

Величину резистора для изготовления блока нагрузки для блока питания компьютера мы рассчитали, но нужно еще определить какой резистор должен быть мощности? Тут поможет другой закон физики, который, независимо друг от друга открыли одновременно два ученых физика. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля-Ленца.

Потребляемая нагрузкой мощность прямо пропорциональна приложенной величине напряжения и протекающей силе тока. Другими словами, при изменении величины напряжения и тока будет пропорционально будет изменяться и потребляемая мощность.

где P – мощность, измеряется в ваттах и обозначается Вт; U – напряжение, измеряется в вольтах и обозначается буквой В; I – сила ток, измеряется в амперах и обозначается буквой А.

Зная напряжения питания и силу тока, потребляемую электроприбором, можно по формуле определить, какую он потребляет мощность. Достаточно ввести данные в окошки ниже приведенного онлайн калькулятора.

Онлайн калькулятор для определения потребляемой мощности
Напряжение, В:
Сила тока, А:

Закон Джоуля-Ленца позволяет также узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Величина потребляемого тока необходима, например, для выбора сечения провода при прокладке электропроводки или для расчета номинала.

Онлайн калькулятор для определения силы тока в зависимости от потребляемой мощности
Потребляемая мощность, Вт:
Напряжение питания, В:

Например, рассчитаем потребляемый ток стиральной машины. По паспорту потребляемая мощность составляет 2200 Вт, напряжение в бытовой электросети составляет 220 В. Подставляем данные в окошки калькулятора, получаем, что стиральная машина потребляет ток величиной 10 А.

Еще один пример, Вы решили в автомобиле установить дополнительную фару или усилитель звука. Зная потребляемую мощность устанавливаемого электроприбора легко рассчитать потребляемый ток и правильно подобрать сечение провода для подключения к электропроводке автомобиля. Допустим, дополнительная фара потребляет мощность 100 Вт (мощность установленной в фару лампочки), бортовое напряжение сети автомобиля 12 В. Подставляем значения мощности и напряжения в окошки калькулятора, получаем, что величина потребляемого тока составит 8,33 А.

Разобравшись всего в двух простейших формулах, Вы легко сможете рассчитать текущие по проводам токи, потребляемую мощность любых электроприборов – практически начнете разбираться в основах электротехники.

Преобразованные формулы Закона Ома и Джоуля-Ленца

Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой не связанные между собой четыре сектора и очень удобна для практического применения

По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.

А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.

Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *