Меню Рубрики

Зарядный ток литий ионных аккумуляторов

Содержание

Старушка купила автомобиль, проехала некоторое расстояние, и вдруг двигатель заглох. Вызванная служба технической поддержки констатировала — закончился бензин. Недоумевающая старушка подает в суд: при продаже ей никто не объяснил, что в машину еще нужно заливать бензин…

Итак, аккумуляторы надо заряжать. В этом их существенное отличие от батареек. Но прежде чем говорить о зарядных устройствах, коротко остановимся на основных методах заряда наиболее распространенных типов аккумуляторов. Следует отметить, что методы заряда аккумуляторов на основе никеля отличаются от методов заряда литий-ионных аккумуляторов. Поэтому при заряде последних обращайте внимание на то, в какое зарядное устройство вы их вставляете. Иными словами, не всякое зарядное устройство для никель-кадмиевых (NiCd) и никель-металл гидридных (NiMH) аккумуляторов годится для заряда литий-ионных (Li-ion) аккумуляторов.

Несколько слов о терминологии. Емкость аккумулятора обычно обозначается буквой «C» (capacity). Когда говорят о разряде, равном 1/10 C, то это означает разряд током, равным десятой части от величины номинальной емкости аккумулятора. Так, например, для аккумулятора емкостью 1000 мА·час это будет разряд током 1000/10 = 100 мА. Теоретически, аккумулятор емкостью 1000 мА·час может отдавать ток 1000 мА в течение одного часа, 100 мА в течение 10 часов, или 10 мА в течение 100 часов. Практически же, при высоких значениях тока разряда номинальная емкость никогда не достигается, а при низких токах превышается.

Аналогично при заряде аккумуляторов, значение 1/10 C означает заряд током, численно равным десятой части заявленной емкости аккумулятора.

Методы заряда NiCd и NiMH аккумуляторов

Существующие методы можно разделить на 4 основные группы:

  • медленный заряд — заряд постоянным током величиной 0.1 С или 0.2 С в течение примерно 15 или 6-8 часов соответственно.
  • быстрый заряд — заряд постоянным током, равным 1/3 С в течение примерно 3-5 часов.
  • ускоренный или дельта V заряд — заряд с начальным током заряда, равным величине номинальной емкости аккумулятора, при котором постоянно измеряется напряжение на аккумулятора и заряд заканчивается после того, как аккумулятор полностью заряжен. Время заряда примерно час-полтора.
  • реверсивный заряд — импульсный метод заряда, при котором короткие импульсы разряда распределяются между длинными зарядными импульсами.

Сразу оговорюсь: разделение это достаточно условно и зависит от фирмы-изготовителя аккумуляторов. Подход к вопросу о заряде аккумуляторов примерно такой: фирма разрабатывает различные типы аккумуляторов под различные применения и устанавливает для каждого типа рекомендации и требования по наиболее благоприятным методам заряда. В результате одинаковые по внешнему виду (размерам) аккумуляторы (одиночные элементы) могут потребовать применения различных методов заряда. Иллюстрацией данного подхода могут служить материалы, размещенные на [1] и [2].

Медленный метод заряда

При таком методе возможно несколько вариантов: заряд полупостоянным током и заряд постоянным током.

При заряде полупостоянным током начальное значение тока устанавливается примерно равным 1/10 С. По мере продолжения заряда это значение уменьшается. Время заряда примерно 15-16 часов. Практически метод реализуется зарядом через токозадающий резистор от источника постоянного напряжения (см. [1] для NiCd аккумуляторов). Медленный заряд током в 1/10 C — обычно безопасен для любого аккумулятора.

При заряде постоянным током значение тока величиной 1/10 С поддерживается в течение всего времени заряда. (Рис.1)

Рисунок 1. Медленный метод заряда NiCd и NiMH аккумуляторов

Во время заряда наблюдается повышение напряжения на элементе аккумулятора. По достижении полного заряда и при перезаряде напряжение начинает уменьшаться.

Сокращение времени заряда в 2-2,5 раза возможно при увеличении тока до 0,2 С, но при этом необходимо ограничить время заряда 6-8 часами.

Метод быстрого заряда

Разновидностью медленного заряда является метод быстрого заряда, при котором используется ток заряда величиной от 0,3 до 1,0 C. Но при этом возможен перегрев аккумулятора, особенно при токах заряда, близких к 1 C. Для исключения перегрева и определения момента окончания заряда аккумулятора, в последний встраивается термопредохранитель и термодатчик. Термодатчик используется для измерения температуры, изменение которой рассматривается в качестве критерия для прекращения заряда. Дело в том, что при достижении полного заряда, температура элементов аккумулятора резко повышается. И когда она повысится на 10 градусов Цельсия и более по отношению к окружающей среде, заряд необходимо прекратить, или перейти в режим медленного заряда. При любом методе заряда в случае, если применяются большие токи заряда, дополнительно требуется предохранительный таймер.

Читайте также:  Для чего предназначена ударная отвертка

Метод дельта V заряда

Это наилучший и, пожалуй, основной метод быстрого заряда NiCd и NiMH аккумуляторов для сотовых телефонов. Сущность метода заключается в измерении изменения напряжения на аккумуляторе для определения (фиксирования) момента полного заряда и необходимости его прекращения.

Если измерять напряжение на выводах аккумулятора во время заряда постоянным током, то можно заметить, что напряжение сначала медленно повышается, а в точке полного заряда будет кратковременно уменьшаться. Величина уменьшения небольшая, примерно 15-30 мВ на элемент для NiCd и 5-10 для NiMH, но явно выражена. Этот небольшой спад напряжения и принимается за критерий прекращения заряда. Кроме того, метод дельта V заряда почти всегда сопровождается измерением температуры, что обеспечивает дополнительный критерий оценки степени заряда аккумулятора (а для верности зарядные устройства для больших аккумуляторов высокой емкости обычно имеют кроме этого и таймеры безопасности).

Рисунок 2. Метод дельта V заряда NiCd и NiMH аккумуляторов

На рис.2 приведен график заряда с током величиной в 1 C. После достижения полного заряда, ток заряда уменьшается до 1/30 … 1/50 C для компенсации явления саморазряда аккумулятора.

Существуют электронные схемы, разработанные специально для реализации метода дельта V заряда. Например MAX712 и MAX713. Реализация заряда по этому методу сложнее и дороже, чем другие, но дает хорошо воспроизводимые результаты. В тоже время следует отметить, что в аккумуляторе с хотя бы одним плохим элементом из цепочки последовательно соединенных, метод дельта V заряда может не работать и привести к разрушению остальных элементов.

NiMH аккумуляторы имеют специфические проблемы с зарядом. Величина дельта V у них очень мала, и ее труднее обнаружить, чем в случае NiCd аккумуляторов. Поэтому NiMH аккумуляторы для сотовых телефонов имеют температурные датчики в качестве резервного средства для обнаружения момента полного заряда.

Другая проблема, возникающая при заряде по этому методу, заключается в том, что при использовании в автомобилях электрические помехи маскируют обнаружение дельта V, и телефоны в основном управляют зарядом по температуре. Это может привести к повреждению аккумулятора, поскольку в автомобиле телефон постоянно подключен и многократные запуски и остановки двигателя имеет место. Каждый раз, когда зажигание выключается на несколько минут и затем включается обратно, инициируется новый цикл заряда.

Реверсивный метод заряда

В анализаторах аккумуляторов Cadex 7000 [3,4] и CASP/2000L(H) используются реверсивные импульсные методы заряда, при котором короткие импульсы разряда распределяются между длинными зарядными импульсами. Считается, что такой метод заряда улучшает рекомбинацию газов, возникающих в процессе заряда, и позволяет проводить заряд большим током за меньшее время. Кроме того, восстанавливается площадь активной поверхности рабочего вещества аккумулятора, устраняя тем самым «эффект памяти».

На рис.3 схематично изображена временная диаграмма реверсивного метода заряда NiCd и NiMH аккумуляторов, реализованная в анализаторе Cadex 7000. Цифрой 1 обозначен нагрузочный (разрядный) импульс, а цифрой 2 — зарядный.

Рисунок 3. Реверсивный метод заряда NiCd и NiMH аккумуляторов

Величина обратного импульса нагрузки определяется в процентах от тока заряда в диапазоне от 5 до 12%. Оптимальное значение 9%.

Метод заряда литий-ионных (Li-ion) аккумуляторов

Для заряда Li-ion аккумуляторов используется метод «постоянное напряжение / постоянный ток», суть которого заключается в ограничении напряжения на аккумуляторе. В этом он подобен методу заряда свинцово-кислотных аккумуляторов (SLA). Основные отличия заключаются в том, что для Li-ion аккумуляторов — выше напряжение на элемент (номинальное напряжение элемента 3,6 В против 2 В для SLA), более жесткий допуск на это напряжение (±0,05 В) и отсутствие медленного подзаряда по окончании полного заряда.

Для примера приведем требования и рекомендации по заряду и разряду литий-ионных аккумуляторов фирмы Panasonic [1]:

  • максимальное напряжение заряда 4,2 или 4,1 вольта в зависимости от модели аккумулятора;
  • напряжение окончания разряда 3,0 вольта;
  • рекомендуемый ток заряда 0,7 С, ток разряда (нагрузки) — 1 С и меньше;
  • если напряжение на аккумуляторе менее 2,9 вольта, то рекомендуемый ток заряда 0,1 С;
  • глубокий разряд может привести к повреждению аккумулятора (т. е. должно соблюдаться общее правило — Li-ion аккумуляторы любят скорее находиться в заряженном состоянии, чем в разряженном, и заряжать их можно в любое время, не дожидаясь разряда);
  • по мере приближения напряжения на аккумуляторе к максимальному значению, ток заряда уменьшается. Окончание разряда должно происходить при уменьшении тока заряда до (0,1 … 0,07) С в зависимости от модели аккумулятора. После окончания заряда ток заряда прекращается полностью.
  • диапазон температур при заряде от 0 до 45 градусов Цельсия, при разряде от минус 10 до 60 градусов Цельсия.
Читайте также:  Гарантийный срок на окна пвх по госту

Приведенные выше данные могут отличаться в ту или иную сторону для аккумуляторов других производителей.

В то время как для SLA аккумуляторов допустима некоторая гибкость в установке значения напряжения прекращения заряда, для Li-ion аккумуляторов изготовители очень строго подходят к выбору этого напряжения. Порог напряжения прекращения заряда для Li-ion аккумуляторов 4,10 В или 4,20 В, допуск на установку для обоих типов ±0,05 В на элемент. Для вновь разрабатываемых Li-ion аккумуляторов, вероятно, будут определены другие значения этого напряжения. Следовательно, зарядные устройства для них должны быть адаптированы к требуемому напряжению заряда.

Более высокое значение порога напряжения обеспечивает и большее значение емкости, поэтому в интересах изготовителя выбрать максимально возможный порог напряжения без нарушения безопасности. Однако на величину этого порога влияет температура аккумулятора, и его устанавливают достаточно низким для того, чтобы допустить повышенную температуру при заряде.

В зарядных устройствах и анализаторах аккумуляторов, которые позволяют изменять значение этого порога напряжения, его правильная установка должна соблюдаться при обслуживании любых аккумуляторов Li-ion типа. Однако большинство изготовителей не обозначают тип Li-ion аккумулятора и напряжения окончания заряда. И, если напряжение установлено неправильно, то аккумулятор с более высоким напряжением выдаст более низкое значение емкости, а аккумулятор с более низким — будет немного перезаряжен. При умеренной температуре повреждения аккумуляторов не происходит.

Именно в этом, как правило, и заключается причина того, что аккумулятор, заряженный, например, в «родном» телефоне, работает меньшее или большее время, чем этот же аккумулятор, заряженный в настольном зарядном устройстве неизвестного производителя.

Повышение температуры аккумулятора при заряде незначительно (от 2 до 8 градусов в зависимости от типа и производителя)

Вмешательство потребителя в любое Li-ion зарядное устройство не рекомендуется.

Медленный подзаряд по окончании заряда, характерный для аккумуляторов на основе никеля, не применяется, потому что Li-ion аккумулятор не терпит перезаряда. Медленный заряд может вызвать металлизацию лития и привести к разрушению элемента. Вместо этого время от времени для компенсации маленького саморазряда аккумулятора из-за небольшого тока потребления устройством защиты может применяться кратковременный заряд.

Li-ion аккумуляторы содержат несколько встроенных устройств защиты: плавкий предохранитель, термопредохранитель и внутреннюю схему управления, которая отключает аккумулятор в нижней и верхней точках напряжения разряда и заряда.

Меры предосторожности: Никогда не пытайтесь заряжать литиевые батарейки! Попытка зарядить эти аккумуляторы может вызывать взрыв и воспламенение, которые распространяют ядовитые вещества и могут причинить повреждения оборудованию.

Меры безопасности: В случае разрушения литий-ионного аккумулятора, утечки электролита и попадания его на кожу или глаза, немедленно промойте эти места проточной водой. Если электролит попал в глаза, промойте их проточной водой в течение 15 минут и обратитесь к врачу.

При написании статьи использованы материалы, любезно предоставленные г-ном Isidor Buchmann, основателем и главой Канадской компании Cadex Electronics Inc. [3].

Более подробная информация на русском языке об аккумуляторах для мобильной техники связи, компьютеров и других портативных приборов, советы по эксплуатации и обслуживанию приведены в [4,5,6,7] .

О зарядных устройствах для мобильных устройств связи в следующей статье.

Рекомендуемый ток заряда литий-ионного аккумулятора напрямую зависит от его емкости и особенностей модели. Превышать рекомендованные токи заряда не рекомендуется, чтобы не сократить срок службы АКБ. Значение тока разряда (параметр С) примерно соответствует величине емкости аккумулятора или аккумуляторной сборки.

Процесс зарядки протекает в 2 этапа:

  1. При неизменном токе (его значение выбирается из промежутка 0,2С–1С с учетом рекомендаций производителя АКБ) до значения напряжения 4,1–4,2 В.
  2. При неизменном напряжении до тех пор, когда напряжение достигнет уровня напряжения отсечки, а ток заряда снизится до 3% от исходного значения.
Читайте также:  Детский нескользящий коврик для ванны

Зарядное устройство литий-ионных АКБ – это источник постоянного напряжения 5 В. Его необходимо подбирать, так, чтобы он отдавал ток, приблизительно соответствующий 0,5–1 емкости аккумуляторной батареи.

Каким током нужно заряжать литиевые аккумуляторы?

В качестве примера определим, каким током можно заряжать Li-Ion аккумулятор 48 В, 10 А*ч, если согласно требованиям производителя ток заряда должен быть 0,5С, а ток разряда 3С. Отталкиваясь от емкости 10 А*ч, выбираем зарядное устройство не более 5 А (продолжительной силы тока заряда). При выборе контроллера (потребителя ) также учитываем значение емкости и выясняем, что ток разряда должен быть не более 30 А (продолжительной силы тока разряда).

Аналогично рассчитаем, каким током заряжать литий ионные аккумуляторы 48 В, 20 А*ч. Поскольку С≈20, выбираем контроллер (потребитель ) не более 60 А (3С ) продолжительной силы тока разряда и зарядное устройство не более 10 А (0 ,5С) продолжительной силы тока заряда. Т.е. всегда руководствуемся значением емкости и рекомендациями производителя по выбору значения тока заряда (из диапазона 0,2С–1С).

О том, как правильно зарядить Li-Ion аккумулятор в первый раз, читайте в этом материале.

Зарядить литий-ионных (li-ion) аккумуляторы можно зарядными устройствами или самостоятельно. Не будем рассматривать устройство li-ion и полимерных (li-pol) аккумуляторов, а сразу перейдем к практике. Оба типа аккумулятора заряжаются одинаково поэтому далее будем говорить о li-ion.

Правила заряда Li-Ion аккумулятора:

  • Аккумулятор можно заряжать только при температуре от 0 до +45 градусов. Пока аккумулятор не согреется, нормально брать заряд он не будет;
  • Минимальное напряжение для Li-Ion аккумулятора 2,5 или 3 вольта, в зависимости от химического состава. Лучше ориентироваться на 3В;
  • Номинальное напряжение 3,7 В;
  • Максимальное напряжение заряда 4,2В или 4,3В, в зависимости от химического состава. Лучше ориентироваться на 4,2В;
  • Емкость указанна на батареи или устройстве, назовем ее C. Далее будет понятно зачем ее знать для заряда;
  • Нормальный режим заряда: ток ограничен 0,5*C (т.е. значение равное половине емкости батареи), напряжение ограничено 4,2В;
  • Если батарея разряжена до 3В и ниже: ток должен быть ограничен 0,1*C до того времени пока напряжение не превысит 3В;
  • Батарея заряжается до того времени, пока ток не перестанет уменьшаться или его не будет вообще, если при этом вы ограничили напряжение 4,2В. Если напряжение не ограничиваете — до того как напряжение не поднимется до 4,2В;
  • Никогда не поднимайте напряжение выше 4,2 или 4,3 вольт. При стабильном превышении напряжения на электродах происходит отложение. В лучшем случае батарея навсегда потеряет в емкости. При длительном процессе отложение вызывает замыкание. Возможен ее нагрев, разрушение электродов и возгорание.

Зарядка li-ion аккумулятора

Дополнительно

Для самостоятельного заряда Вам нужно ограничивать напряжение и силу тока. идеальный вариант для этого лабораторный источник питания.

Допустимые и рекомендуемые режимы заряда и разряда указаны в документации на конкретную батарею, если ее удается найти. Например в мощных смартфонах аккумуляторы заряжаются током значительно превышающим половину емкости.

В литий-ионных аккумуляторах с напряжением выше 3,7 В аккумуляторы соединены параллельно. Поделив напряжение аккумулятора на 3,7 получается число последовательно соединенных аккумуляторов. Умножив число аккумуляторов на 3, получим минимальное напряжение для вашей батареи. Умножив на 4,2 получим максимальное напряжение.

Li-Ion аккумуляторы практически лишены «эффекта памяти» поэтому не нуждаются в тренировке. Старайтесь не разряжать батарею полностью и не держать постоянно заряженной.

Оптимальный заряд для батареи 50-80%. Однако мучится и выдерживать такие значения при использовании ноутбука, смартфона или даже фонарика — бессмысленно. Обычно заряжают когда удобно и по необходимости, разряжается до скольки придется. Li-Ion для этого и создан, нет смысла себя ограничивать.

Следуя вышеперечисленному методы зарядки батарей большими напряжениями или током «для толчка» вредны АКБ. Лучше оставьте батарею на малом токе на несколько часов или пару дней. Это более бережливый способ оживить батарею. Это позволит контроллеру отработать как положено и разрешить заряд нормальными токами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *