Меню Рубрики

Защита симистора от пробоя

Содержание

Для защиты радиоэлектронного оборудования традиционно применяют плавкие предохранители. Обычно в них используют тонкие неизолированные проводники калиброванного сечения, рассчитанные на заданный ток перегорания. Наиболее надежно эти приспособления работают в цепях переменного тока повышенного напряжения. С понижением рабочего напряжения эффективность их применения снижается. Обусловлено это тем, что при перегорании тонкой проволоки в цепи переменного тока возникает дуга, распыляющая проводник. Предельным напряжением, при котором может возникнуть такая дуга, считается напряжение 30. 35 6. При низковольтном питании происходит просто плавление проводника. Процесс этот занимает более продолжительное время, что в ряде случаев не спасает современные полупроводниковые приборы от повреждения.
Тем не менее, плавкие предохранители и поныне широко используют в низковольтных цепях постоянного тока, там, где от них не требуется повышенное быстродействие.
Там, где плавкие предохранители не могут эффективно решить задачу защиты радиоэлектронного оборудования и приборов от токовых перегрузок, их можно с успехом использовать в схемах защиты электронных устройств от перенапряжения.
Принцип действия этой защиты прост: при превышении уровня питающего напряжения срабатывает пороговое устройство, устраивающее короткое замыкание в цепи нагрузки, в результате которого проводник предохранителя плавится и разрывает цепь нагрузки.
Метод защиты аппаратуры от перенапряжения за счет принудительного пережигания предохранителя, конечно, не является идеальным, но получил достаточно широкое распространение благодаря своей простоте и надежности. При использовании этого метода и выбора оптимального варианта защиты стоит учитывать, насколько быстродействующим должен быть автомат защиты, стоит ли пережигать предохранитель при кратковременных бросках напряжения или ввести элемент задержки срабатывания. Желательно также ввести в схему индикацию факта перегорания предохранителя.
Простейшее защитное устройство [4.1], позволяющее спасти защищаемую радиоэлектронную схему, показано на рис. 4.1. При пробое стабилитрона включается тиристор и шунтирует нагрузку, после чего перегорает предохранитель. Тиристор должен быть рассчитан на значительный, хотя и кратковременный ток. В схеме совершенно не допустимо использование суррогатных предохранителей, поскольку в противном случае могут одновременно выйти из строя как защищаемая схема, так и источник питания, и само защитное устройство.


Рис. 4.1. Простейшая защита от перенапряжения

Рис. 4.2. Помехозащищенная схема защиты нагрузки от превышения напряжения

Усовершенствованная схема защиты нагрузки от превышения напряжения, дополненная резистором и конденсатором [4.2], показана на рис. 4.2. Резистор ограничивает предельный ток через стабилитрон и управляющий переход тиристора, конденсатор снижает вероятность срабатывания защиты при кратковременных бросках питающего напряжения.
Следующее устройство (рис. 4.3) защитит радиоаппаратуру от выхода из строя при случайной переполюсовке или превышении
напряжения питания, что нередко бывает при неисправности генератора в автомобиле [4.3].
При правильной полярности и номинальном напряжении питания диод VD1 и тиристор VS1 закрыты, и ток через предохранитель FU1 поступает на выход устройства.


Рис. 4.3. Схема защиты радиоаппаратуры с индикацией аварии

Если полярность обратная, то диод VD1 открывается, и сгорает предохранитель FU1. Лампа EL1 загорается, сигнализируя об аварийном подключении.
При правильной полярности, но входном напряжении, превышающем установленный уровень, задаваемый стабилитронами VD2 и VD3 (в данном случае — 16 Б), тиристор VS1 открывается и замыкает цепь накоротко, что вызывает перегорание предохранителя и зажигание аварийной лампы EL1.
Предохранитель FU1 должен быть рассчитан на максимальный ток, потребляемый радиоаппаратурой.
Элементы ГТЛ-логики обычно работоспособны в узком диапазоне питающих напряжений (4,5. 5,5 Б). Если аварийное снижение питающего напряжения не столь опасно для «здоровья» микросхем, то повышение этого напряжения совершенно недопустимо, поскольку может привести к повреждению всех микросхем устройства.
На рис. 4.4 приведена простая и довольно эффективная схема защиты 7777-устройств от перенапряжения, опубликованная в болгарском журнале [4.4]. Способ защиты предельно прост: как только питающее напряжение превысит рекомендуемый уровень всего на 5% (т.е. достигнет величины 5,25 Б) сработает пороговое устройство и включится тиристор. Через него начинает протекать ток короткого замыкания, который пережигает плавкий предохранитель FU1. Разумеется, в качестве предохранителя нельзя использовать суррогатные предохранители, поскольку в таком случае может выйти из строя блок питания, защищающий схему тиристор, а затем и защищаемые микросхемы.
Недостатком устройства является отсутствие индикации перегорания предохранителя. Эту функцию в устройство несложно ввести самостоятельно. Примеры организации индикации разрыва питающей цепи приведены также в главе 36 книги [1.5].


Рис. 4.4. Схема защиты микросхем ТТЛ от перенапряжения


Рис. 4.5. Схема устройства защиты от перенапряжения, работающего на переменном и постоянном токе

Схема устройства, которое в случае аварии в электросети защитит телевизор, видеомагнитофон, холодильник и т.д. от перенапряжения, приведена на рис. 4.5 [4.5].
Напряжение срабатывания защиты определяется падением напряжения на составном стабилитроне VD5+VD6 и составляет 270 Б.
Конденсаторы С1 и С2 образуют совместно с резистором R1 RC-цепочку, которая препятствует срабатыванию устройства при импульсных выбросах в сети.
Схема работает следующим образом. При напряжении в сети до 270 В стабилитроны VD3, VD4 закрыты. Также закрыты и тиристоры VS1, VS2. При действующем напряжении более 270 В открываются стабилитроны VD3, VD4, и на управляющие электроды тиристоров VS1, VS2 поступает открывающее напряжение. В зависимости от полярности полупериода сетевого напряжения ток проходит либо через тиристор VS1, либо через VS2. Когда ток превышает 10 А, срабатывают автоматические выключатели (пробки, плавкие предохранители), отключая электроприборы от электросети. Нагрузка (на рисунке не показана) подключается параллельно тиристорам. Проверить работоспособность устройства можно с помощью ЛАТРа.
Устройство работоспособно и на постоянном токе.

Читайте также:  Выпускной оформление зала своими руками


Рис. 4.6. Схема релейного устройства защиты от перенапряжения с самоблокировкой

Устройство защиты от перенапряжения (рис. 4.6) выгодно отличается от предыдущих тем, что в нем не происходит необратимого повреждения элемента защиты [4.6]. Вместо этого при напряжении свыше 14,1 В пробивается цепочка стабилитронов VD1 — VD3, включается и самоблокируется тиристор VS1, срабатывает реле К1 и своими контактами отключает цепь нагрузки.
Восстановить исходное состояние устройства защиты можно только после вмешательства оператора — для этого следует нажать на кнопку SB1. Устройство также переходит в рабочий ждущий режим после кратковременного отключения источника питания. К числу недостатков данного устройства защиты относится его высокая чувствительность к кратковременным перенапряжениям.
Устройство (патент DL-WR 82992) [4.7], принципиальная схема которого приведена на рис. 4.7, может применяться для защиты нагрузки от недопустимо высокого выходного напряжения. В нормальных условиях транзистор VT1 работает в режиме, когда напряжение между его коллектором и эмиттером небольшое, и на транзисторе рассеивается небольшая мощность (ток базы определяется резистором R1). Сопротивление стабилитрона VD2 в этом случае большое и тиристор VS1 закрыт.


Рис. 4.7. Схема полупроводникового реле защиты нагрузки от перенапряжения

При возрастании напряжения на выходе устройства выше определенной величины через стабилитрон начинает протекать ток, который приводит к открыванию тиристора. Транзистор VT1 при этом закрывается, и напряжение на выходе устройства становится близко к нулю. Отключить защиту можно только отключением источника питания.
Описанное устройство должно включаться в выходную цепь стабилизаторов так, чтобы сигнал обратной связи подавался из цепи, расположенной за системой защиты. При номинальном выходном напряжении 12 В и токе 1 А в устройстве можно применить транзистор КТ802А, тиристор КУ201А — КУ201К, стабилитрон — Д814Б. Сопротивление резистора R1 должно быть 39 Ом (мощность рассеивания при отсутствии системы автоматики, отключающей стабилизатор от сети, составляет 10 Вт), R2 — 200 Ом, R3 — 1 кОм.

Одним из главных достоинств тиристора является его малые габаритные размеры. Однако, одновременно с уменьшением габаритных размеров тиристора уменьшается и его постоянная нагрева и, соответственно, ухудшаются условия теплоотдачи. Именно его высокая тепловая чувствительность возлагает большую ответственность на средства защиты тиристора. Ниже приведены типичные аварийные режимы и средства защиты от них.

Все выше перечисленные преобразователи имеют свои плюсы и минусы. Разберемся с каждым в отдельности.

Ограничение скорости нарастания тока di/dt

При наличии на тиристоре прямого напряжении в момент подачи управляющего импульса происходит открывание тиристора и через него начинает протекать ток. Этот ток начинает протекать в непосредственной близости от управляющего электрода и постепенно распространяется на всю площадь перехода. Поэтому если в начальный момент времени открытия тиристора скорость нарастания тока будет слишком велика, то его плотность вблизи управляющего перехода будет слишком высока, что вызовет перегрев, который может привести к выходу элемента из строя. Для того предотвращения подобных ситуаций скорость нарастания тока di/dt необходимо ограничивать. Поэтому в цепь анодную тиристора могут включатся небольшие реакторы. Для большинства тиристоров di/dt лежит в пределах 20-500 А/мкс.

Ограничение скорости нарастания напряжения du/dt

При прямом падении напряжения к внешним переходам J1 и J3(структурная схема здесь) приложено прямое напряжение, а к переходу внутреннему J3 – обратное. Эквивалентной емкостью обладает J3, следствием чего станет протекание тока при подаче напряжения:

Где: СJ – емкость перехода.

Если скорость изменения напряжения на тиристоре будет слишком высокой, то ток перехода может достигнуть значения, которое достаточно для включения без подачи управляющего импульса. Такой эффект включения без управляющего импульса под действием du/dt может приводить к очень серьезным сбоям в работе не только преобразователя, но и устройств управляемых преобразователем.

Скорость изменения du/dt, допустимая, обычно находится в пределах 20-500 В/мкс. для защиты тиристора от непреднамеренных включений при больших du/dt применяют параллельные RC цепи.

Пример расчета цепей ограничения di/dt и du/dt

Для регулирования выделяемой на резисторе мощности используют тиристор. Необходимо определить параметры защитных цепей. Uc = 400В, di/dt = 50 А/мкс, du/dt = 200 В/мкс. Схема показана ниже:

Итак, мы знаем, что напряжение на конденсаторе не меняется мгновенно, а также то, что полупроводниковый элемент имеет довольно большое внутреннее сопротивление в зоне низкой проводимости. Поэтому при замыкании Q схему можно заменить на эквивалентную:

Уравнения напряжений будут иметь вид:

Где Rш – сопротивление резистора в шунтирующей цепи.

Из предыдущей формулы следует, что di/dt будет иметь максимальное значение при i = 0:

Напряжение на тиристоре:

Продифференцировав это уравнение по времени получим:

Выполнив преобразования получим:

Если сопротивление Rш будет слишком малым, то это приведет к довольно большим потерям в нем. Из схемы выше можно увидеть, что в момент замыкания ключа Q абсолютно все напряжения источника питания до открытия тиристора будет приложено к конденсатору С. Это приведет к тому, что в момент открытия вентильного ключа произойдет резкий бросок тока, и его пиковое значение будет тем выше, чем меньше будет значение сопротивления Rш. Таким образом, сопротивление Rш может быть достаточным (с точки зрения токового ограничения), но слишком большим для ограничения du/dt. Емкость Сш, в свою очередь, то же выбирают небольшой, для того что бы предотвратить выход вентиля из строя при его открытии. Довольно частые значения Rш и Сш составляют 10 Ом и 0,1 мкФ. При известном значении Rш можно найти индуктивность реактора L:

Читайте также:  Биологический метод очистки сточных вод

Отвод тепла в процессе работы тиристора

В открытом состоянии полупроводниковый вентиль имеет довольно малое сопротивление и падение напряжения на нем не превышает 1-2 В. Это относительно небольшое падение, при значительных токах анодных приводит к серьезным тепловым потерям, которые способны вызвать выход прибора из строя. Для предотвращения перегрева полупроводниковых устройств их крепят на специальные радиаторы, которые способствуют теплоотведению. Если теплоотводящих свойств радиатора недостаточно – применяют принудительное охлаждение.

Защита тиристоров от перенапряжений

Не всегда процесс работы полупроводника проходит в нормальных условиях. Иногда, при ударах молний, не удовлетворительных условиях коммутации, переходных процессах на полупроводниковом ключе может возникнуть перенапряжение. Для защиты от перенапряжений используют нелинейные элементы, сопротивление которых зависит от напряжения (например, стабилитрон). Они подключаются параллельно элементу, и, при больших напряжениях шунтируют силовую цепь.

Защита от аварийных токов

Полупроводник имеют относительно небольшую теплоемкость, поэтому они довольно плохо переносят перегрузку, работу при импульсных токах, а также краткосрочные броски тока. Для обеспечения защиты от таких режимов используют старые добрые проверенные методы, а именно – автоматические выключатели и плавкие предохранители. Автоматические выключатели обеспечивают защиту от перегрузок, а плавкие предохранители от коротких замыканий КЗ. Время срабатывания защитной аппаратуры должно соответствовать характеристикам защищаемых элементов. Также самым важным фактором должно быть отключение прибора от сети при возникновении аварийных ситуаций до его выхода из строя. Именно исходя из этого условия и подбирают защитную аппаратуру.

Защита цепи управляющего электрода тиристора

Управляющие цепи требуют защит, как от аварийных токов, так и от перенапряжений. Поскольку их мощность малая, то это позволяет применять простые способы защиты – от напряжений стабилитроны, от токов – токоограничивающие резисторы. Немаловажным фактором является и защита от ложных срабатываний. Ложное срабатывание может происходить из-за коммутации соседних вентилей или же возможных сетевых помех, которые могут вызывать переход тиристора в открытое состояние. Защита цепей управления состоит в экранировании или скручивании их проводов. Довольно часто между катодом и выводом управляющего электрода устанавливают конденсатор и резистор, выполняющий роль фильтра. На рисунке ниже показана схема защиты тиристора:

Схемная защита

Защиты, рассмотренные выше, не всегда могут обеспечить должный уровень защиты. Для организации защиты тиристорных преобразователей может использоваться большое количество схемных решений. Самое распространенное из них – блокировка импульсов управления. Также могут использовать дополнительный параллельный тиристор, который будет шунтировать основной до срабатывания основной защиты (автоматический выключатель).

Возможна схема с емкостным гасящим устройством, применима для инверторов с аварийным режимом при включении элементов одного плеча. Применима для инверторов с реверсом тока, состоит из конденсатора обладающего небольшой емкость, включенного сразу реактором фильтра. При одновременном включении двух элементов ток переводится в гасящий конденсатор, и полуволна отрицательная, которая образуется в колебательном LC контуре запрет тиристоры. Ну и, соответственно, параметры реактора и конденсатора подбирают таким образом, чтоб образованные в данном контуре токи не превысили допустимые токи элементов. Предохранитель не должен перегорать при каждом импульсе тока. Более того, данный контур может применяться и как коммутирующий.

Одним из главных достоинств тиристора является его малые габаритные размеры. Однако, одновременно с уменьшением габаритных размеров тиристора уменьшается и его постоянная нагрева и, соответственно, ухудшаются условия теплоотдачи. Именно его высокая тепловая чувствительность возлагает большую ответственность на средства защиты тиристора. Ниже приведены типичные аварийные режимы и средства защиты от них.

Все выше перечисленные преобразователи имеют свои плюсы и минусы. Разберемся с каждым в отдельности.

Ограничение скорости нарастания тока di/dt

При наличии на тиристоре прямого напряжении в момент подачи управляющего импульса происходит открывание тиристора и через него начинает протекать ток. Этот ток начинает протекать в непосредственной близости от управляющего электрода и постепенно распространяется на всю площадь перехода. Поэтому если в начальный момент времени открытия тиристора скорость нарастания тока будет слишком велика, то его плотность вблизи управляющего перехода будет слишком высока, что вызовет перегрев, который может привести к выходу элемента из строя. Для того предотвращения подобных ситуаций скорость нарастания тока di/dt необходимо ограничивать. Поэтому в цепь анодную тиристора могут включатся небольшие реакторы. Для большинства тиристоров di/dt лежит в пределах 20-500 А/мкс.

Ограничение скорости нарастания напряжения du/dt

При прямом падении напряжения к внешним переходам J1 и J3(структурная схема здесь) приложено прямое напряжение, а к переходу внутреннему J3 – обратное. Эквивалентной емкостью обладает J3, следствием чего станет протекание тока при подаче напряжения:

Где: СJ – емкость перехода.

Если скорость изменения напряжения на тиристоре будет слишком высокой, то ток перехода может достигнуть значения, которое достаточно для включения без подачи управляющего импульса. Такой эффект включения без управляющего импульса под действием du/dt может приводить к очень серьезным сбоям в работе не только преобразователя, но и устройств управляемых преобразователем.

Читайте также:  Двухкомфорочная плита с духовкой электрическая стеклокерамика

Скорость изменения du/dt, допустимая, обычно находится в пределах 20-500 В/мкс. для защиты тиристора от непреднамеренных включений при больших du/dt применяют параллельные RC цепи.

Пример расчета цепей ограничения di/dt и du/dt

Для регулирования выделяемой на резисторе мощности используют тиристор. Необходимо определить параметры защитных цепей. Uc = 400В, di/dt = 50 А/мкс, du/dt = 200 В/мкс. Схема показана ниже:

Итак, мы знаем, что напряжение на конденсаторе не меняется мгновенно, а также то, что полупроводниковый элемент имеет довольно большое внутреннее сопротивление в зоне низкой проводимости. Поэтому при замыкании Q схему можно заменить на эквивалентную:

Уравнения напряжений будут иметь вид:

Где Rш – сопротивление резистора в шунтирующей цепи.

Из предыдущей формулы следует, что di/dt будет иметь максимальное значение при i = 0:

Напряжение на тиристоре:

Продифференцировав это уравнение по времени получим:

Выполнив преобразования получим:

Если сопротивление Rш будет слишком малым, то это приведет к довольно большим потерям в нем. Из схемы выше можно увидеть, что в момент замыкания ключа Q абсолютно все напряжения источника питания до открытия тиристора будет приложено к конденсатору С. Это приведет к тому, что в момент открытия вентильного ключа произойдет резкий бросок тока, и его пиковое значение будет тем выше, чем меньше будет значение сопротивления Rш. Таким образом, сопротивление Rш может быть достаточным (с точки зрения токового ограничения), но слишком большим для ограничения du/dt. Емкость Сш, в свою очередь, то же выбирают небольшой, для того что бы предотвратить выход вентиля из строя при его открытии. Довольно частые значения Rш и Сш составляют 10 Ом и 0,1 мкФ. При известном значении Rш можно найти индуктивность реактора L:

Отвод тепла в процессе работы тиристора

В открытом состоянии полупроводниковый вентиль имеет довольно малое сопротивление и падение напряжения на нем не превышает 1-2 В. Это относительно небольшое падение, при значительных токах анодных приводит к серьезным тепловым потерям, которые способны вызвать выход прибора из строя. Для предотвращения перегрева полупроводниковых устройств их крепят на специальные радиаторы, которые способствуют теплоотведению. Если теплоотводящих свойств радиатора недостаточно – применяют принудительное охлаждение.

Защита тиристоров от перенапряжений

Не всегда процесс работы полупроводника проходит в нормальных условиях. Иногда, при ударах молний, не удовлетворительных условиях коммутации, переходных процессах на полупроводниковом ключе может возникнуть перенапряжение. Для защиты от перенапряжений используют нелинейные элементы, сопротивление которых зависит от напряжения (например, стабилитрон). Они подключаются параллельно элементу, и, при больших напряжениях шунтируют силовую цепь.

Защита от аварийных токов

Полупроводник имеют относительно небольшую теплоемкость, поэтому они довольно плохо переносят перегрузку, работу при импульсных токах, а также краткосрочные броски тока. Для обеспечения защиты от таких режимов используют старые добрые проверенные методы, а именно – автоматические выключатели и плавкие предохранители. Автоматические выключатели обеспечивают защиту от перегрузок, а плавкие предохранители от коротких замыканий КЗ. Время срабатывания защитной аппаратуры должно соответствовать характеристикам защищаемых элементов. Также самым важным фактором должно быть отключение прибора от сети при возникновении аварийных ситуаций до его выхода из строя. Именно исходя из этого условия и подбирают защитную аппаратуру.

Защита цепи управляющего электрода тиристора

Управляющие цепи требуют защит, как от аварийных токов, так и от перенапряжений. Поскольку их мощность малая, то это позволяет применять простые способы защиты – от напряжений стабилитроны, от токов – токоограничивающие резисторы. Немаловажным фактором является и защита от ложных срабатываний. Ложное срабатывание может происходить из-за коммутации соседних вентилей или же возможных сетевых помех, которые могут вызывать переход тиристора в открытое состояние. Защита цепей управления состоит в экранировании или скручивании их проводов. Довольно часто между катодом и выводом управляющего электрода устанавливают конденсатор и резистор, выполняющий роль фильтра. На рисунке ниже показана схема защиты тиристора:

Схемная защита

Защиты, рассмотренные выше, не всегда могут обеспечить должный уровень защиты. Для организации защиты тиристорных преобразователей может использоваться большое количество схемных решений. Самое распространенное из них – блокировка импульсов управления. Также могут использовать дополнительный параллельный тиристор, который будет шунтировать основной до срабатывания основной защиты (автоматический выключатель).

Возможна схема с емкостным гасящим устройством, применима для инверторов с аварийным режимом при включении элементов одного плеча. Применима для инверторов с реверсом тока, состоит из конденсатора обладающего небольшой емкость, включенного сразу реактором фильтра. При одновременном включении двух элементов ток переводится в гасящий конденсатор, и полуволна отрицательная, которая образуется в колебательном LC контуре запрет тиристоры. Ну и, соответственно, параметры реактора и конденсатора подбирают таким образом, чтоб образованные в данном контуре токи не превысили допустимые токи элементов. Предохранитель не должен перегорать при каждом импульсе тока. Более того, данный контур может применяться и как коммутирующий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *