Для механизмов, имеющих тяжелые условия пуска, где по ряду причин желательно использовать асинхронный двигатель с короткозамкнутым ротором, применяются двигатели с улучшенными пусковыми свойствами: большим пусковым моментом и меньшим пусковым током, чем у двигателей общего назначения. Эти двигатели отличаются от двигателей нормального исполнения только устройством короткозамкнутой обмотки ротора. Одни из них снабжены двумя самостоятельными обмотками типа «беличьей клетки» (рис. 10.24, а), другие имеют более глубокие пазы ротора (рис. 10.24, б), в которые укладывается короткозамкнутая обмотка, имеющая в отличие от обычной стержни с большим отношением высоты к ширине, третьи обладают повышенным сопротивлением стержней обмотки. Первые называются двигателями с двойной «беличьей клеткой», вторые — с глубоким пазом, третьи — с повышенным скольжением. Рассмотрим процессы, происходящие при пуске двигателя с двойной «беличьей клеткой».
Рис. 10.24 Двигатель с улучшенными пусковыми свойствами: с двойной «беличьей клеткой» (а), с глубоким пазом (б) |
Обмотка 1 (рис. 10.24, а) имеет меньшее активное сопротивление по сравнению с обмоткой 2, так как она большего диаметра и выполнена из материала с меньшим удельным сопротивлением (медь), чем вторая (латунь). Стержни обмотки1 расположены в толще ферромагнитного сердечника ротора, стержни обмотки 2 —ближе к воздушному зазору. В результате этого при пуске магнитное поле, образованное токами обмоток, располагается примерно так, как показано на рис. 10.24.
Из рисунка следует, что магнитный поток, сцепленный с обмоткой 1, больше, чем магнитный поток, сцепленный с обмоткой 2, следовательно, индуктивность первой обмотки будет также больше.
В первый момент пуска (s = 1) индуктивное сопротивление обмоток будет иметь наибольшее значение, так как
xs = 2πf2L= 2πf1sL = 2πf1L,
и токораспределение между обмотками будет определяться главным образом их индуктивными сопротивлениями. Поскольку индуктивное сопротивление первой обмотки значительно больше, чем второй, ток в ней, как следует из закона Ома для роторной цепи (10.29), будет значительно меньше по сравнению с током второй обмотки. Таким образом, основной
момент будет возникать в результате действия тока второй обмотки, имеющей значительное активное сопротивление. По мере разгона двигателя уменьшаются частота тока ротора и индуктивные сопротивления обеих обмоток, что вызывает перераспределение тока в обмотках: в первой обмотке ток увеличивается, во второй уменьшается. После окончания разгона частота тока ротора становится настолько малой (0,5 — 5 Гц), что индуктивное сопротивление обмоток оказывается намного меньше их активного сопротивления, вследствие чего весь ток ротора практически будет располагаться в первой обмотке, активное сопротивление которой значительно меньше, чем второй. Таким образом, роль рабочей выполняет первая обмотка, роль пусковой — вторая. Получается картина, подобная пуску двигателя с контактными кольцами и введенным в цепь ротора добавочным сопротивлением.
Асинхронные короткозамкнутые двигатели с улучшенными пусковыми свойствами
Многие электроприводы для достижения высокого быстродействия и надежности запуска требуют повышенного пускового момента, близкого к максимальному. Этой цели можно достичь, выполнив обмотку ротора с повышенным активным сопротивлением (кривая 1 рис. 4.19). Однако рабочая ветвь механической характеристики такого двигателя оказывается весьма «мягкой», поэтому в номинальном режиме двигатель будет работать с большим скольжением, что связано со значительными потерями и низкими энергетическими показателями. Для достижения высоких энергетических показателей желательно иметь «жесткую» механическую характеристику (кривая 2 рис. 4.19). Получить механическую характеристику, сочетающую положительные свойства характеристик 1 и 2, можно, если использовать поверхностный эффект в стержнях роторной обмотки для повышения активного сопротивления обмотки в начале пуска, когда частота тока в роторе близка к частоте сети. По мере разгона двигателя частота тока в роторе падает, поверхностный эффект ослабляется и сопротивление ротора снижается. Вид механической характеристики такого двигателя представлен кривой 3 на рис. 4.19. Существует несколько конструктивных решений, обеспечивающих использование поверхностного эффекта.
Дата добавления: 2015-06-10 ; просмотров: 2408 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Стремление совместить достоинства асинхронных двигателей с короткозамкнутым ротором (высокая надежность) и фазным ротором (большой пусковой момент) привело к созданию этих двигателей. Они имеют короткозамкнутую обмотку ротора специальной конструкцией. Различают двигатели с обмоткой ротора в виде двойной «беличьей клетки» (рис. 2.20.а) и с глубоким пазом (рис. 2.20.б).
На рис. 2.20 показаны конструкции ротора двигателей с улучшенными пусковыми свойствами.
У двигателя с двойной «беличьей клеткой» на роторе закладывается две короткозамкнутые обмотки. Обмотка 1 выполняет роль пусковой, а обмотка 2 является рабочей. Для получения повышенного пускового момента пусковая обмотка должна обладать большим активным сопротивлением, чем рабочая обмотка. Поэтому обмотка 1 выполняется из материала с повышенным удельным сопротивлением (латунь), чем обмотка 2 (медь). Сечение проводников, образующих пусковую обмотку, меньше, чем у рабочей обмотки. За счет этого повышается активное сопротивление пусковой обмотки.
Рабочая обмотка, расположенная глубже, охватывается большим магнитным потоком, чем пусковая. Поэтому индуктивное сопротивление рабочей обмотки значительно больше, чем пусковой. За счет этого в момент пуска в ход, когда частота тока ротора имеет наибольшее значение, ток в рабочей обмотке, как следует из закона Ома, будет небольшим и в создании пускового момента будет участвовать в основном пусковая обмотка, имеющая большое активное сопротивление. По мере разгона двигателя частота тока ротора падает, уменьшается и индуктивное сопротивление обмоток ротора, это приводит к увеличению тока в рабочей обмотке, за счет этого в создании вращающего момента будет участвовать, в основном, рабочая обмотка. Т.к. она обладает малым активным сопротивлением, естественная механическая характеристика двигателя будет жесткой.
Аналогичная картина наблюдается у двигателя с глубоким пазом (рис. 2.20.б). Глубокий стержень обмотки (1) можно представить в виде нескольких проводников, расположенных по высоте паза. За счет высокой частоты тока в обмотке ротора в момент пуска в ход происходит «вытеснение тока к поверхности проводника». За счет этого в создании пускового момента участвует только верхний слой проводников обмотки ротора. Сечение верхнего слоя значительно меньше сечения всего проводника. Поэтому при пуске в ход обмотка ротора обладает повышенным активным сопротивлением, двигатель развивает повышенный пусковой момент. По мере разгона двигателя плотность тока по сечению проводников обмотки ротора выравнивается, сопротивление обмотки ротора снижается.
В целом эти двигатели имеют жесткие механические характеристики, повышенный пусковой момент и меньшую кратность пускового тока, чем двигатели с короткозамкнутым ротором обычной конструкцией.
Регулирование частоты вращения асинхронных двигателей
При работе многих механизмов, приводящихся во вращение асинхронными двигателями, в соответствии с технологическими требованиями возникает необходимость регулировать скорость вращения этих механизмов. Способы регулирования частоты (скорости) вращения асинхронных двигателей раскрывает соотношение:
Отсюда следует, что при заданной нагрузке на валу частоту вращения ротора можно регулировать:
- изменением скольжения;
- изменением числа пар полюсов;
- изменением частоты источника питания.
Изменение скольжения
Этот способ используют в приводе тех механизмов, где установлены асинхронные двигатели с фазным ротором. Например, в приводе подъемно-транспортных машин. В цепь фазного ротора вводится регулировочный реостат. Увеличение активного сопротивления ротора не влияет на величину критического момента, но увеличивает критическое скольжение (рис. 2.21).
На рис. 2.21 приведены механические характеристики асинхронного двигателя при разных сопротивлениях регулировочного реостата Rр3>Rр2>0,Rр1=0.
Как следует из рис. 2.21 при этом способе можно получить большой диапазон регулирования частоты вращения в сторону понижения. Основные недостатки этого способа:
- Из-за больших потерь на регулировочном реостате снижается коэффициент полезного действия, т.е. способ неэкономичный.
- Механическая характеристика асинхронного двигателя с увеличением активного сопротивления ротора становится мягче, т.е. снижается устойчивость работы двигателя.
- Невозможно плавно регулировать частоту вращения.
Из-за перечисленных недостатков этот способ применяют для кратковременного снижения частоты вращения.
Изменение числа пар полюсов
Эти двигатели (многоскоростные) имеют более сложную обмотку статора, позволяющую изменять ее число пар полюсов, и короткозамкнутый ротор. При работе асинхронного двигателя необходимо, чтобы обмотки ротора и статора имели одинаковое число пар полюсов. Только короткозамкнутый ротор способен автоматически приобретать то же число пар полюсов, что и поле статора. Многоскоростные двигатели нашли широкое применение в приводе металлорежущих станков. Нашли применение двух, трех и четырех скоростные двигатели.
На рис. 2.22 показана схема соединения и магнитное поле статора двигателя при последовательном (б) и параллельном (а) соединении полуобмоток.
У двухскоростного двигателя обмотка каждой фазы состоит из двух полуобмоток. Включая их последовательно или параллельно можно в 2 раза изменять число пар полюсов.
У четырехскоростного двигателя на статоре должно размещаться две независимые обмотки с разным числом пар полюсов. Каждая из обмоток позволяет в два раза изменять число пар полюсов. Например, у двигателя, работающего от сети c частотой f=50 Гц, со следующими частотами вращения 3000/1500/1000/500 [об/мин] с помощью одной из обмоток статора можно получить частоту вращения 3000 об/мин и 1500 об/мин (при этом p=1 и p=2). С помощью другой из обмоток можно получить частоту вращения 1000 об/мин и 500 об/мин (при этом p=3 и p=6).
При переключении числа пар полюсов изменяется и магнитный поток в зазоре, что приводит к изменению критического момента Mкр (рис. 2.23.б). Если при изменении числа пар полюсов одновременно изменять и подведенное напряжение, то критический момент может остаться неизменным (рис. 2.23.а). Поэтому при этом способе регулирования могут быть получены два вида семейства механических характеристик (рис. 2.23).
Достоинства этого способа регулирования: сохранение жесткости механических характеристик, высокий К.П.Д. Недостатки: ступенчатое регулирование, большие габариты и большая стоимость двигателя.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
2.3 Асинхронные двигатели с улучшенными пусковыми свойствами
Значительное улучшение пусковых характеристик асинхронных двигателей с короткозамкнутым ротором достигается изменением конструкции ротора. В качестве таких конструкций широко используют роторы с двойной короткозамкнутой обмоткой и с глубокими пазами.
2.3.1 АД с глубокопазным ротором
В двигателях с глубокими пазами на роторе его короткозамкнутая обмотка выполняется в виде тонких высоких полос (рисунок 2.4). При такой конструкции обмотки происходит оттеснение тока к верхней части проводников вследствие того, что нижние части проводников сцеплены с большим числом магнитных линий потока рассеяния, чем верхние части.
Таким образом, ток, протекающий по проводникам, стремится сконцентрироваться преимущественно в верхней их части, что равносильно уменьшению поперечного сечения или увеличению активного сопротивления этих проводников.
Рисунок 2.4 – Схема устройства ротора с глубокими пазами и явление вытеснения тока: а) магнитное поле; б) диаграмма распределения плотности тока; в) рабочая часть проводника
Это явление оттеснения тока в верхние части проводников особенно сильно сказывается в момент включения двигателя, когда частота тока в роторе равна частоте тока сети и, следовательно, при пуске в ход увеличивается активное сопротивление обмотки ротора, в результате чего возрастает пусковой момент. При увеличении скорости вращения ротора частота тока в его обмотке уменьшается, и ток более равномерно распределяется по сечению стержней и при нормальной скорости вращения неравномерность распределения тока по поперечному сечению стержней почти полностью исчезает.
Пусковой момент двигателей этого типа МП = (1,2 – 1,5)МН.
2.3.2 АД с двойной короткозамкнутой обмоткой ротора
Ротор этого типа имеет две короткозамкнутые обмотки, выполненные в виде беличьих клеток (рисунок 2.5).
Число пазов верхней А и нижней Б клеток может быть одинаково или различно.
Рисунок 2.5 – Схема устройства ротора с двойной короткозамкнутой обмоткой
Верхняя клетка А выполнена из стержней малого поперечного сечения, а нижняя Б – из стержней большого поперечного сечения. Поэтому активное сопротивление обмотки А оказывается значительно большим, чем активное сопротивление обмотки Б (rA> rБ).
Вследствие того что стержни внутренней обмотки Б глубоко погружены в тело ротора и окружены сталью, индуктивное сопротивление внутренней обмотки значительно больше, чем индуктивное сопротивление внешней обмотки (ХБ >>XA).
При пуске в ход ток в основном протекает по проводникам внешней обмотки А, имеющей меньшее индуктивное и большее активное сопротивление. Эта обмотка называется пусковой.
В рабочем режиме скольжение мало и, следовательно, частота тока в роторе также мала. Поэтому индуктивные сопротивления обмоток не имеют значения и токи в обмотках А и Б обратно пропорциональны активным сопротивлениям.
Таким образом, в рабочем режиме ток в основном протекает по проводникам внутренней обмотки Б, имеющей меньшее активное сопротивление. Эта обмотка называется рабочей.
При такой конструкции ротора увеличивается активное сопротивление его обмотки в момент пуска в ход двигателя, что увеличивает пусковой момент.
Таким образом, в двигателях с двойной короткозамкнутой обмоткой и с глубокими пазами пусковые моменты больше и пусковые токи меньше, чем у обычных короткозамкнутых двигателей.
Однако рабочие характеристики этих двигателей несколько хуже, чем обычных короткозамкнутых двигателей – несколько меньше cosj, КПД и максимальный момент, так как у этих двигателей больше потоки рассеяния, т.е. больше индуктивные сопротивления обмоток ротора, чем у двигателей нормальной конструкции.
2.4 Способы пуска АД с коротокамкнутым ротором
К асинхронным двигателям предъявляются требования по пусковым характеристикам, так как вопросы связанные с пуском в ход, имеют большое значение. При решении вопросов пусковых характеристик необходимо учитывать, с одной стороны, условия работы сети, к которой подключается асинхронный двигатель, и, с другой стороны, требования, которые предъявляются к приводу. Оценка пусковых свойств двигателя производится по пусковым характеристикам, к которым следует отнести начальный пусковой ток Iп, или его кратность Iп/Iн и начальный пусковой момент Мп или его кратность Мп/Мн.
Способы пуска АД с короткозамкнутым ротором: прямой пуск, реакторный и автотрансформаторный.
2.4.1 Прямой пуск АД
В настоящее время в связи со значительным ростом мощностей энергетических систем пуск в ход короткозамкнутых асинхронных двигателей в преобладающем большинстве случаев осуществляется очень простым способом (рисунок 2.6), а именно непосредственным включением в сеть.
В первый момент пуска, когда скорость вращающегося магнитного поля ω1 относительно неподвижного ротора (ω = 0) имеет наибольшую величину, в обмотке ротора будет наводиться значительная ЭДС, величина которой во много раз превышает номинальное значение при вращающемся роторе. Например, если при номинальной нагрузке двигателя скольжение составляет sном = 0,05, а ЭДС в роторе E2ном, то в начальный момент пуска при стоянке ротора, когда s = 1, т. е. в начальный момент пуска ЭДС, наводимая в роторе, будет в 20 раз больше, чем при номинальной нагрузке.
Соответственно значительно возросшей ЭДС ротора ток, создаваемый ею в роторе при пуске, также будет большим, превышающим номинальный в несколько (до восьми) раз. То обстоятельство, что кратность пускового тока в роторе меньше кратности ЭДС, объясняется увеличением реактивного сопротивления ротора при увеличении частоты тока, которая в начальный момент пуска достигает частоты статора.
Пусковой ток в обмотке статора при этом будет весьма значительным, превышающим в несколько раз номинальный. Современные двигатели с короткозамкнутым ротором имеют кратность пускового тока, составляющую 4-7 от номинального.
Поскольку большинство двигателей и приводимых ими механизмов имеет относительно небольшую инерцию, скорость двигателей при пуске достаточно быстро увеличивается до значения, соответствующего моменту нагрузки. Период пуска продолжается обычно не более нескольких секунд, вследствие чего пусковые токи статора и ротора не представляют опасности для двигателя, так как нагрев обмоток не успевает достигнуть опасных температур. Значение пускового момента находится в пределах 0,8-1,5 от номинального.
Рисунок 2.6 – Схема прямого пуска асинхронного короткозамкнутого двигателя