Меню Рубрики

Camelion wl 4002 схема принципиальная

Содержание

Сайт для тех, кто дружит с паяльником.

Ремонтируем люминесцентную лампу

Несколько лет пользуюсь светильником с трубчатой 18-ти ваттной люминесцентной лампой. Особых нареканий он ( светильник) не вызывл… Кроме замены сгоревших люминесцентных ламп, никаких отказов в работе не было. Но, как говорится, ничто не вечно…

Некоторое время назад при попытке включить светильник внутри него раздался хлопок, сопровождавшийся вспышкой. Светильник был немедленно обесточен, снят и задвинут на дальнюю полку в кладовой. Учитывая его солидный возраст первым решением было выбросить светильник на свалку. Позже все-таки было решено попытаться отремонтировать его.

Приступаем к ремонту.

Разбираем светильник и извлекаем люминесцентную лампу. Первым дело проверяем омметром нити накала лампы на предмет обрыва. Нити накала оказались целыми, соответственно и лампа оказалась исправной и пригодной к дальнейшей эксплуатации.

После вскрытия светильника сразу бросилось в глаза ужасное состояние заводского сетевого шнура, который находился внутри корпуса светильника. Изоляция шнура потрескалась во многих местах, утратила эластичность и крошилась прямо под пальцами.

Вот такой вид имеет сетевой шнур после десяти лет эксплуатации

Такое состояние провода таит в себе следующие опасности:

-возможность поражения электрическим током;

-возможность возникновения замыкания и, как следствие, возгорания;

Поэтому этот шнур меняем в первую очередь!

Продолжаем работу… Хлопок внутри светильника явно указывал на отказ электронного балласта.

Извлекаем электронный балласт

Визуальный осмотр не выявил сгоревших резисторов. Сетевой предохранитель также был исправен. Сетевой предохранитель –это крайняя левая деталь на платке балласта и обозначена как F1.

А вот электролитический конденсатор номиналом 4,7мкФ х 400V оказался вздутым

Чтобы проводить дальнейший ремонт не вслепую, пришлось поискать в сети схемы электронных балластов. Их есть великое множество, и они очень похожи друг на друга. Различие состоит только в номиналах некоторых деталей, наличии/отсутствии дополнительных защитных элементов и типе транзисторов.

Попытка сверить схему балласта из моей лампы с схемами из сети показала что, в нашем случае в схему балласта включены дополнительные элементы. Поэтому чтобы не ломать голову пришлось составить схему по печатной плате.

Первым делом в таких случаях проверяем транзисторы. Оба транзистора оказались негодными с пробитыми переходами Б-К. В данном балласте применены транзисторы типа ЕВ13003, которые являются аналогами транзистора MJE13003, но имеют отличную от оригинала цоколевку. Это нужно учитывать при замене вышедших из строя транзисторов.

Дальнейшая проверка выявила пришедшие в негодность резисторы R2,R3,R4,R5,R6,R7. Характер неисправности у всех резисторов аналогичен-увеличение сопротивления до 1МОм и больше.

Вышедшие из строя элементы помечены красными кружками на принципиальной схеме

Все конденсаторы ( кроме вышеуказанного электролита С2) оказались исправными.

Вместо негодных впаиваем резисторы типа МЛТ-0,125 необходимых номиналов.

Вместо транзисторов ЕВ13003 запаиваем какие-то китайские типа S13003.

Собираем светильник в обратном порядке.

Пробное включение…. Все заработало. ))

Всегда интересен вопрос выяснения причины выхода из строя радиодеталей. Применительно к этому светильнику, а точнее, к его электронному балласту, мои соображения следующие… Уже после ремонта обратил внимание на то, что корпус светильника в зоне установки электронного балласта ощутимо нагревается. Раньше на это как-то внимания не обращал. Нагрев указывает на то, что радиоэлементы работают в тяжелых температурных условиях. На мой взгляд-это одна из главных причин отказа радиоэлементов. Первым от перегрева видимо вышел из строя электролитический конденсатор 4,7мкФ х 400В, который является фильтром после диодного мостика. Ухудшение подавления пульсаций выпрямленного напряжения увеличило уровень напряжений, приложенных к переходам транзисторов. Следующим вылетел один из транзисторов, а дальше по принципу домино-вылетел и другой, попутно сгорели резисторы в базовых и эмиттерных цепях.. И все..Дальше был ремонт.

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Читайте также:  Аппарат уфо солнышко для дома для детей

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии :) вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Опасность люминесцентных ламп и рекомендации по использованию.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Читайте также:  Виток провода площадью 2 5

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

С холодным запуском

С горячим запуском

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC – терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

9zip.ru Радиотехника, электроника и схемы своими руками Схемы, устройство и работа энергосберегающих ламп

Компактные энергосберегающие лампы работают так же, как и обычные люминесцентные лампы с тем же принципом преобразования электрической энергии в световую. Трубка имеет на концах два электрода, которые нагреваются до 900-1000 градусов и испускают множество электронов, ускоряемых приложенным напряжением, которые сталкиваются с атомами аргона и ртути. Возникающая низкотемпературная плазма в парах ртути преобразуется в ультрафиолетовое излучение. Внутренняя поверхность трубки покрыта люминофором, преобразующим ультрафиолетовое излучение в видимый свет. К электродам подводится переменное напряжение, поэтому их функция постоянно меняется: они становятся то анодом, то катодом. Генератор подводимого к электродам напряжения работает на частоте в десятки килогерц, поэтому энергосберегающие лампы, по сравнению с обычными люминесцентными лампами, не мерцают.

Разберём работу энергосберегающей лампы на примере наиболее распространённой схемы (лампа мощностью 11Вт).


Схема состоит из цепей питания, которые включают помехозащищающий дроссель L2, предохранитель F1, диодный мост, состоящий из четырёх диодов 1N4007 и фильтрующий конденсатор C4. Схема запуска состоит из элементов D1, C2, R6 и динистора. D2, D3, R1 и R3 выполняют защитные функции. Иногда эти диоды не устанавливают в целях экономии.

При включении лампы, R6, C2 и динистор формируют импульс, подающийся на базу транзистора Q2, приводящий к его открытию. После запуска эта часть схемы блокируется диодом D1. После каждого открытия транзистора Q2, конденсатор C2 разряжен. Это предотвращает повторное открытие динистора. Транзисторы возбуждают трансформатор TR1, который состоит из ферритового колечка с тремя обмотками в несколько витков. На нити поступает напряжение через конденсатор C3 с повышающего резонансного контура L1, TR1, C3 и C6. Трубка загорается на резонансной частоте, определяемой конденсатором C3, потому что его ёмкость намного меньше, чем ёмкость C6. В этот момент напряжение на конденсаторе C3 достигает порядка 600В. Во время запуска пиковые значения токов превышают нормальные в 3-5 раз, поэтому если колба лампы повреждена, существует риск повреждения транзисторов.

Когда газ в трубке ионизирован, C3 практически шунтируется, благодаря чему частота понижается и генератор управляется только конденсатором C6 и генерирует меньшее напряжение, но, тем не менее, достаточное для поддержания свечения лампы.
Когда лампа зажглась, первый транзистор открывается, что приводит к насыщению сердечника TR1. Обратная связь на базу приводит к закрытию транзистора. Затем открывается второй транзистор, возбуждаемый противоположно подключенной обмоткой TR1 и процесс повторяется.

Читайте также:  Декор стен с помощью малярного скотча

Неисправности энергосберегающих ламп
Конденсатор C3 часто выходит из строя. Как правило, это бывает в лампах, в которых используются дешёвые компоненты, расчитанные на низкое напряжение. Когда лампа перестаёт зажигаться, появляется риск выхода из строя тназисторов Q1 и Q2 и вследствие этого – R1, R2, R3 и R5. При запуске лампы генератор часто оказывается перегружен и транзисторы часто не выдерживают перегрева. Если колба лампы выходит из строя, электроника обычно тоже ломается. Если колба уже старая, одна из спиралей может перегореть и лампа перестанет работать. Электроника в таких случаях, как правило, остаётся целой.
Иногда колба лампы может быть повреждена из-за деформации, перегрева, разницы температур. Чаще всего лампы перегорают в момент включения.

Ремонт
Ремонт обычно заключается в замене пробитого конденсатора C3. Если перегорает предохранитель (иногда он бывает в виде резистора), вероятно неисправными оказываются транзисторы Q1, Q2 и резисторы R1, R2, R3, R5. Вместо перегоревшего предохранителя можно установить резистор на несколько Ом. Неисправностей может быть сразу несколько. Например, при пробое конденсатора, могут перегреться и сгореть транзисторы. Как правило, используются транзисторы MJE13003.

Для того, чтобы сделать режим работы лампы более мягким, энергосберегающую лампу можно модернизировать.

Устройство лампы
Лампа обычно состоит из двух частей. Верхняя часть имеет отверстия, в которые вставляется трубка. Вторая часть – больше по размерам, в ней находится печатная плата с деталями, к которой идут выводы от трубки. От верхней части платы идут провода к цоколю лампы. Обе части лампы имеют защёлки, иногда они приклеиваются. Чтобы разобрать лампу, нужно пройтись небольшой отвёрткой по месту соединения частей.

Схемы энергосберегающих ламп, как правило, очень похожи.


Схема энергосберегающей лампы Osram


Схема энергосберегающей лампы Philips

По материалам http://www.pavouk.org/hw/lamp/index.html (Česky)

Кое-что о дневном свете

Солнце представляет собой тепловой излучатель, дающий непрерывный спектр. Тонкими линиями поглощения, очень интересными для спектроскописта, мы можем пренебречь, оценивая солнце как источник света. Различные методы измерения температуры солнца (точнее, его поверхности, излучающей свет) дали довольно близкие результаты, лежащие в пределах от 5750° до 6200°.

Измерения у поверхности земли дают несколько иные значения, так как атмосфера в различной степени поглощает излучения разных длин волн. Поглощение озона сильно ослабляет ультрафиолетовую часть спектра. Пары воды дают широкие полосы поглощения в инфракрасной области. Видимая часть спектра претерпевает наименьшие изменения.

Однако под дневным светом мы понимаем обычно не прямой солнечный свет, а свет, рассеянный небом, облаками, земными предметами. Небо рассеивает преимущественно голубые лучи, растения — зелёные, и т. д. Поэтому спектральный состав дневного света может значительно отличаться от состава света солнца. Измеряя состав дневного света, мы получим разные результаты в зависимости от места измерения, состояния погоды и т. д. Преобладание света, рассеянного чистым небом, смещает максимум энергии в сторону коротких волн, т. е. повышает цветовую температуру дневного света. Запылённость атмосферы обогащает свет красными лучами, и максимум смещается в сторону длинных волн, цветовая температура понижается.

Мы уже говорили, что «истинным» цветом тела мы считаем его цвет при дневном освещении. Но оказывается, что спектральный состав дневного света весьма неопределёнен; поэтому для точных цветовых измерений явилась потребность стандартизировать понятие «дневной свет». В основе такого стандарта лежит газонаполненная лампа накаливания с цветовой температурой 2848° К — так называемый источник А. Так как его температура много ниже температуры солнца, применяют фильтры, снижающие интенсивность красной части спектра и таким образом увеличивающие относительную энергию коротковолновой части. Два рода фильтров дают возможность получить два стандартных источника, имитирующие дневной свет: 1) источник В с цветовой температурой около 4800° К и 2) источник С с цветовой температурой около 6500° К. Источник В соответствует желтоватым фазам дневного света, источник С — голубоватым.

Благотворное действие ультрафиолетовых лучей на человека и животных известно каждому. Но в слишком больших дозах ультрафиолетовые лучи, в особенности коротковолновые, губительно действуют на живые ткани и, в частности, на глаз. Сетчатка оказывается чувствительна даже к лучам с такой длиной волны, но они задерживаются хрусталиком, который чрезвычайно сильно их поглощает, защищая сетчатку (всё же интенсивное облучение ультрафиолетовыми лучами — кварцевая ртутная дуга, электросварка — чрезвычайно опасно для глаз).

Инфракрасные лучи трудно использовать, так как их фотоны обладают малой энергией и фотохимическое действие их мало. Всё же сетчатка могла бы «очувствиться» к ним, если бы это было биологически полезно. Но нам кажется, что чрезмерное расширение используемой части спектра было бы невыгодно ввиду усиления хроматической аберрации. Трудно представить себе оптическую преломляющую систему/хорошо исправленную для этой области длин волн. Наконец, следует учесть, что назначение глаза заключается не просто в восприятии световой энергии, а в том, чтобы различать освещённые предметы один от другого. Каждый предмет в зависимости от свойств своей поверхности в различной степени отражает лучи различных длин волн, что помогает отличать его от других предметов.

Человеческий глаз действительно прекрасно приспособлен к дневному свету, к воспроизведению которого и должны стремиться источники искусственного света.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *