Меню Рубрики

Dc dc преобразователь на xl4015e1 схема

Данный обзор посвящён модулю импульсного стабилизатора, который предлагается интернет-магазинами под названием "5A Lithium Charger CV CC Buck Step Down Power Module LED Driver". Таким образом модуль представляет собой импульсный понижающий преобразователь, предназначенный для зарядки литий-ионных аккумуляторов в режимах CV (постоянное напряжение) и СС (постоянный ток), а также для питания светодиодов. Стоит данное устройство около 2-х USD. Конструктивно модуль представляет собой печатную плату, на которой установлены все элементы, включая сигнальные светодиоды и органы регулировки. Внешний вид модуля представлен на рис.1.

Чертёж печатной платы представлен на рис. 2.

Согласно спецификации изготовителя модуль имеет следующие технические характеристики:

  • Входное напряжение 6-38 В постоянного тока.
  • Выходное напряжение регулируемое 1.25-36 В постоянного тока.
  • Выходной ток 0-5 А (регулируемый).
  • Мощность в нагрузке до 75 ВА.
  • КПД более 96%.
  • Имеется встроенная защита от перегрева и короткого замыкания в нагрузке.
  • Размеры модуля 61.7х26.2х15 мм.
  • Масса 20 грамм.

Сочетание невысокой цены, малых размеров и высоких технических характеристик вызвало у автора интерес и желание экспериментально определить основные характеристики модуля.
Производитель не приводит схему электрическую принципиальную, по этому её пришлось рисовать самостоятельно. Результат этой работы представлен на рис. 3.

Основой устройства является микросхема DA2 XL4015, представляющая собой оригинальную китайскую разработку. Данная микросхема весьма похожа на популярную LM2596, но отличается улучшенными характеристиками. Видимо это достигается применением в качестве силового ключа мощного полевого транзистора. Описание этой микросхемы приведено в Л1. В данном устройстве микросхема включена в полном соответствии с рекомендациями изготовителя. Переменный резистор “CV” является регулятором выходного напряжения. Цепь регулируемого ограничения выходного тока выполнена на операционном усилителе DA3.1. Этот усилитель сравнивает падение напряжения на токоизмерительном резисторе R9 с регулируемым напряжением, снимаемым с переменного резистора “CC”. С помощью этого резистора можно задать желаемый уровень ограничения тока в нагрузке стабилизатора.

Если заданное значение тока будет превышено, то на выходе усилителя появится сигнал высокого уровня, красный светодиод HL2 откроется и напряжение на входе 2 микросхемы DA2 повысится, что приведёт к снижению напряжения и тока на выходе стабилизатора. Кроме того свечение HL2 будет сигнализировать о том, что модуль работает в режиме стабилизации тока (СС). Конденсатор С5 должен обеспечивать устойчивость узла регулирования тока.

На втором операционном усилителе DA3.2 собран сигнализатор снижения тока в нагрузке до значения менее 9% от заданного максимального тока. Если ток превышает указанное значение, то светится синий светодиод HL3, в противном случае светится зелёный светодиод HL1. При зарядке литий-ионных аккумуляторов снижение зарядного тока является одним из признаков окончания зарядки.
На микросхеме DA1 собран стабилизатор с выходным напряжением 5В. Это напряжение используется для питания операционного усилителя DA3, также оно используется для формирования опорного напряжения ограничителя тока и сигнализатора снижения тока.

Падение напряжения на токоизмерительном резисторе никак не компенсируется, по этому с ростом тока в нагрузке выходное напряжение стабилизатора снижается. Чтобы уменьшить данный недостаток величина токоизмерительного резистора выбрана достаточно маленькой (0.05 Ома). Из-за этого дрейф операционного усилителя DA3 может вызвать заметную нестабильность как уровня ограничения выходного тока так и уровня срабатывания сигнализатора.
Испытания модуля показали, что выходное сопротивление стабилизатора в режиме стабилизации напряжения (CV) практически полностью определяется токоизмерительным резистором и составляет около 0.06 Ома.
Коэффициент стабилизации напряжения около 400.
Для оценки тепловыделения на вход модуля было подано напряжение 12В. На выходе было установлено напряжение 5В при нагрузке сопротивлением 2.5 Ома (ток 2А). Через 30 минут микросхема DA2, дроссель L1 и диод VD1 нагрелись до 71, 64 и 48 градусов Цельсия соответственно.

Читайте также:  Видеорегистраторы для систем видеонаблюдения

Работа в режиме стабилизации тока в нагрузке (СС) сопровождалась переходом микросхемы DA2 в режим формирования пачек импульсов. Частота следования и длительность пачек изменялись в широких пределах в зависимости от величины тока. Эффект стабилизации тока при этом имел место, но пульсации на выходе модуля существенно возрастали. Кроме того работа устройства в режиме СС сопровождалась довольно громким писком, источником которого являлся дроссель L1.
Работа сигнализатора снижения тока нареканий не вызвала. Модуль успешно выдерживал короткое замыкание в нагрузке.

Таким образом модуль работоспособен как в режиме CV, так и в режиме СС, но при его использовании следует учитывать вышеописанные особенности.
Данный обзор написан по результатам исследования одного экземпляра устройства, что делает полученные результаты чисто ориентировочными.
По мнению автора описанный импульсный стабилизатор может быть с успехом использован, если требуется дешёвый, компактный источник питания с удовлетворительными характеристиками.

В сегодняшней статье хочу сделать небольшой обзор понижающего преобразователя на XL4015. Этот дешевый модуль на удивление очень мощный для своего маленького размера.

Модуль на XL4015 имеет КПД до 96%, мощность в нагрузке 75ВТ, при максимальном токе 5А. Питается модуль от 6В до 38В, выходное напряжение от 1,25В до 36В. Надо помнить, что разница между входящим и исходящим напряжением не менее 2В. В микросхеме есть защита от перегрева кристалла, а так же защита от короткого замыкания.

Выглядит модуль вот так

Размеры модуля 26*62*16ММ. Высота замерена по самой высокой детали, дросселю.
Пора перейти к схеме модуля с регулировкой напряжения и тока XL4015
Схема преобразователя XL4015

Основой всей схемы является XL4015. Которая чем то напоминает lm2596, но имеет на борту полевой транзистор, а так же выходной ток до 5А
Эта микросхема импульсный понижающий преобразователь. Управление микросхемой происходит через 2-ю ножку называемая FeedBack. Ножка FB это вход компаратора ошибки с фиксированным напряжением 1,25В.

Ограничение напряжения устанавливается переменным резистором CV 10к в составе резисторного делителя R3иCV
Ограничение выходного тока построено на датчике тока которым выступает шунт на 0,05Ом. Падение напряжения на нем сравнивается с напряжением на компараторе, установленным переменным резистором СС 1к. Индикация работы в режиме стабилизатора тока осуществляется красным светодиодом

На втором ОУ собран индикатор нагрузки. Если нагрузка меньше 9% от максимального тока, светится зеленый светодиод, если нагрузка больше- синий светодиод

Смысл от от этого индикатора в блоке питания считаю бесполезным, а вот сигнализатор токов удобно использовать как индикатор заряда аккумулятора.

Испытания XL4015
Пришло испытать модуль
На вход подаю напряжение 23В от конденсаторного фильтра лабораторного блока питания, нагрузка на модуле лампа 12В с мото фары ближний свет
Напряжение под нагрузкой просело до 18,6В при токе 4А, напряжение на выходе 12,3В ток 4А. Если мои расчеты верны то КПД этой схемы 65%.
Под такой нагрузкой за первые 5 минут схема хорошенько нагрелась, проработала еще пол часа и испустила дух.

Читайте также:  Для регулирования силы тока в цепи применяют

Тот самый белым дым, на котором работают все микросхемы и транзисторы, микросхема выпустила. После замены микросхемы и диода все нормально заработало, но я больше ее та не нагружал. Скорее всего первым умер диод и увел за собой микросхему
Плата после замены, диод временно заменил на двойной диод с блока питания ПК
Микросхема выглядит вот так

Вывод напрашивается такой, модуль преобразователя XL4015 великолепно подходит для многих задач и несомненно найдет место в мастерской, но с отводом тепла надо что-то делать
Рекомендую посмотреть статью про универсальное зарядное плюс блок питания на Xl4015

Покупка модуля XL4015
Пару слов о том, где прикупить такой модуль. Естественно, лучшая цена за товар будет именно при заказе с Китая. Проблематично ждать месяц, но если уж экономить,то лучше при прямой покупке
Приобрести модули можно по этой ссылке цена за один 92 рубля, доставка бесплатна

  • Цена: $5.40 за 10шт
  • Перейти в магазин

Очередное включение, ток выставлен на 4А, начинает дико греться диодная сборка, что не удивительно. Устанавливаю её на первый попавшийся под руку радиатор, чтобы опять не запалить.

Плата работает нормально пару часов :) Температура всех компонентов стала гораздо ниже, входной конденсатор перестал перегреваться, самым горячим элементом оставался дроссель, который действительно рассчитан на ток 3A.
Родное кольцо дросселя T50-26B, обмотка проводом всего 0,7мм
Беру ещё парочку колец побольше размером из такого-же материала (распылённое железо -26) и мотаю на 30-33мкГн.
Сразу замечу, что материал неудачен для работы на частотах свыше 100кГц из-за повышенных потерь в сердечнике. На требуемой частоте 300кГц лучше работают кольца из распылённого железа -52 (слева) либо из композитного материала (справа). В дальнейшем обязательно попробую их поставить.

Все 3 дросселя, родной слева.
T50-26B 30мкГн (27 витков 0,7мм, изначально был 31 виток)
T60-26 30мкГн (25 витков 0,9мм)
T80-26 33мкГн (25 витков 1,1мм)

Ставлю дроссель T60-26 30мкГн

На токе 4А сильного нагрева дросселя уже нет, преобразователь работает нормально.
Для выяснения наличия работающей внутренней термозащиты микросхемы, выставил выходной ток 2А и коснулся разогретым паяльником непосредственно до её металлической подложки. Через пару секунд микросхема полностью отрубилась. Убрал паяльник — через 3 секунды микросхема опять заработала. Так успешно повторил несколько раз. Вывод — термозащита работает, но видимо не на всех микросхемах или не во всех режимах.

Далее, был изготовлен и установлен более-менее нормальный радиатор на всё это безобразие. Радиатор — половинка от древнего процессорного кулера.

К плате прилепил на термоскотч. Если будет недостаточно, приклею на теплопроводящий клей

Диодную сборку отавил ту-же и прикрутил к радиатору через изолятор, чтобы не выносить ВЧ импульсы на него.

Ради эксперимента, попробовал поставить дроссель T80-26 33мкГн, но он оказался с огромным запасом по мощности и почти не грелся, смысла его оставлять не было, поставил назад T60-26 30мкГн

Читайте также:  Журнал тарировки динамометрических ключей пример заполнения

После переделок, с установленным радиатором и увеличенным дросселем проверил температуры основных компонентов (пирометром), КПД и пульсации в разных режимах работы.
5В 1А
Радиатор и диод 35°С
ШИМ контроллер 36°С
Дроссель 39°С
Шунт 33°С
КПД 88%

5В 2А
Радиатор и диод 39°С
ШИМ контроллер 42°С
Дроссель 44°С
Шунт 42°С
КПД 86 %

2В 3А
Радиатор и диод 47°С
ШИМ контроллер 51°С
Дроссель 51°С
Шунт 55°С
КПД 78%

5В 3А
Радиатор и диод 46°С
ШИМ контроллер 51°С
Дроссель 52°С
Шунт 55°С
КПД 85%

10В 3А
Радиатор и диод 45°С
ШИМ контроллер 57°С
Дроссель 51°С
Шунт 57°С
КПД 90%

5В 4А
Радиатор и диод 57°С
ШИМ контроллер 68°С
Дроссель 64°С
Шунт 73°С (реально еще выше)
КПД 82%

5В 5А
Радиатор и диод 67°С
ШИМ контроллер 81°С
Дроссель 79°С
Шунт 96°С (реально еще выше) — перегрев налицо.
КПД 78%

Размах пульсаций на выходе при максимальном токе 5А — всего 30мВ.

Это заслуга высокой частоты преобразования 300кГц и керамического конденсатора на выходе.
На рабочих токах более 4А очень желательна замена шунта на 0,025-0,03Ом, что снизит его нагрев и повысит КПД преобразования.
Либо можно обойтись улучшением теплосьёма с шунта при помощи толстого медного проводника:

На токе 5А температура шунта снизилась до безопасной величины.

Для снижения нагрева дросселя попробовал заменить кольцо из распылённого железа -26 на композитное высокочастотное T60 с материнской платы (материал неизвестен), провод 0,9мм 23 витка, индуктивность 18мкГн

Нагрев дросселя заметно снизился — его и оставил.

Добавил резистор 330 Ом последовательно в цепи обратной связи, чтобы токоограничение работало при минимальном выходном напряжении.

Окончательный вариант схемы получился такой:

Ради интереса, проверил форму напряжения на диоде при разном выходном напряжении, но одинаковом токе 1А








10В

12В

Примечательно, что ток нагрузки почти не меняет форму напряжения на диоде, поэтому нет смысла её показывать.
Переделанная плата успешно отработала сутки в режиме 5В 5А без заметной деградации и дрейфа параметров и настроек.

Дополнительно проверил работу схемы при входном напряжении 24V на выходном токе 5А при разных выходных напряжениях — проблем с перегревом и перегрузкой не обнаружено несмотря на выходную мощность до 110Вт (22В 5А).

Итоговые выводы:
— Без переделки и дополнительного охлаждения, плата безопасно вытянет максимум 2,5А-3А
— Штатный диод перегревается сильнее всех элементов и подогревает рядом расположенный конденсатор и микросхему, поэтому вынос его на радиатор очень помогает выжать из платы обещанные амперы.
— Хоть микросхема по спецификации и тянет 5A, но получить их надо ещё постараться.
— Охлаждение элементов радиатором через плату неэффективно, но вполне возможно.
— Отремонтировать и улучшить можно что угодно, но иногда это нецелесообразно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *