Консультации и решение задач по физике.
[администратор рассылки: Гордиенко Андрей Владимирович (Профессионал)]Лучшие эксперты в этом разделе
Алексеев Владимир Николаевич Статус: Мастер-Эксперт Рейтинг: 1265 |
Коцюрбенко Алексей Владимирович Статус: Модератор Рейтинг: 1206 |
Gluck Статус: 8-й класс Рейтинг: 702 |
Перейти к консультации №: |
Здравствуйте эксперты!
Диэлектрик поместили в электрическое поле напряжённостью Е0=20 кВ/м. Чему равна поляризованность Р диэлектрика, если напряжён-ность среднего макроскопического поля в диэлектрике оказалась равной 4 кВ/м?
Состояние: Консультация закрыта
Связь между напряженностью E поля в диэлектрике и напряженностью E0 внешнего поля выражается формулой E = E0 – P/ε0, откуда следует, что
P = (E0 – E)ε0 = (20 ∙ 10 3 – 4 ∙ 10 3 ) ∙ 8,85 ∙ 10 -12 ≈ 140 ∙ 10 -9 = 1,4 ∙ 10 -7 (Кл/м 2 ).
Ответ: 1,4 ∙ 10 -7 Кл/м 2 .
0
Отправлять сообщения
модераторам могут
только участники портала.
ВОЙТИ НА ПОРТАЛ »
регистрация »
Возможность оставлять сообщения в мини-форумах консультаций доступна только после входа в систему.
Воспользуйтесь кнопкой входа вверху страницы, если Вы зарегистрированы или пройдите простую процедуру регистрации на Портале.
Диэлектриками называют тела, не проводящие электрического тока.
Термин «диэлектрик» введен М. Фарадеем для обозначения веществ, через которые проникают электрические поля, в отличие от металлов, внутри которых электростатического поля нет. К диэлектрикам относят твердые тела, такие, как эбонит, фарфор, а также жидкости (например, чистая вода) и газы.
При изменении внешних условий (нагревание, воздействие ионизирующих излучений и т. п.) диэлектрик может проводить электрический ток. Изменение состояния диэлектрика при помещении в электрическое поле можно объяснить его молекулярным строением. Условно выделим три класса диэлектриков: 1) полярные; 2) неполярные; 3) кристаллические.
К первому классу принадлежат такие вещества, как вода, нитробензол и др. Молекулы этих диэлектриков не симметричны, «центры масс» их положительных и отрицательных зарядов не совпадают, поэтому такие молекулы обладают электрическим дипольным моментом даже в случае, когда электрического поля нет.
На рис. 12.19 схематически показаны молекулы соляной кислоты (а) и воды (б) и соответствующие им дипольные моменты в дебаях.
В отсутствие электрического поля дипольные моменты молекул ориентированы хаотически (рис. 12.20, а) и векторная сумма моментов всех N молекул равна нулю: pi = 0.
Если диэлектрик поместить в электрическое поле, то дипольные моменты молекул стремятся ориентироваться вдоль поля (рис. 12.20, б), однако полной ориентации не будет вследствие молекулярно-теплового хаотического движения.
Ко второму классу диэлектриков относят такие вещества (например, водород, кислород и др.), молекулы которых в отсутствие электрического поля не имеют дипольных моментов. В таких молекулах заряды электронов и ядер расположены так, что «центры масс» положительных и отрицательных зарядов совпадают. Если неполярную молекулу поместить в электрическое поле, то разноименные заряды несколько сместятся в противоположные стороны и молекула будет иметь дипольный момент. На рис. 12.21 схематически в виде кружков показаны молекулы такого диэлектрика в отсутствие поля и при наложении поля (стрелки у кружков означают дипольные моменты молекул).
Третий класс — кристаллические диэлектрики (например, NaGl), решетка которых состоит из положительных и отрицательных ионов. Такой диэлектрик можно схематически рассматривать как совокупность двух «подрешеток», одна из которых заряжена положительно, другая — отрицательно. При отсутствии поля подрешетки расположены симметрично и суммарный электрический момент такого диэлектрика равен нулю. Если диэлектрик поместить в электрическое поле, то подрешетки немного сместятся в противоположные стороны и диэлектрик приобретет электрический момент.
Все эти процессы, происходящие в разных диэлектриках при наложении электрического поля, объединяют общим термином поляризация, т. е. приобретение диэлектриком дипольного момента.
Для первого класса диэлектриков характерна ориентационная поляризация, для второго — электронная, т. е. смещение главным образом электронных оболочек, для третьего — ионная. Такая классификация условна, так как в реальном диэлектрике могут одновременно существовать все виды поляризации.
Изменение напряженности электрического поля, в котором находится диэлектрик, будет влиять на состояние его поляризации. Охарактеризовать степень поляризации диэлектрика суммарным электрическим моментом все его N молекул нельзя, как эта величина зависит, в частности, от объема диэлектрика.
Для оценки состояния поляризации диэлектрика вводят величину, называемую поляризованностью, среднее значение которой равно отношению суммарного электрического момента элемента объема V диэлектрика к этому объему:
Единицей поляризованности является кулон на квадратный метр (Кл/м 2 ).
При поляризации диэлектрика на одной его поверхности (грани) создаются положительные заряды, а на другой — отрицательные (см. рис. 12.20, б и 12.21, б). Эти электрические заряды называют связанными, так как они принадлежат молекулам диэлектрика (или кристаллической решетке при ионной поляризации) и не могут перемещаться в отрыве от молекул или быть удалены с поверхности диэлектрика в отличие от свободных зарядов, которых в идеальном диэлектрике нет.
При возрастании напряженности электрического поля растет степень упорядоченности ориентации молекул (ориентационная поляризация), увеличиваются дипольные моменты молекул (электронная поляризация), а также происходит большее смещение «подрешеток» (ионная поляризация) — все это приводит к увеличению поверхностной плотности δсв связанных электрических зарядов.
Таким образом, δсв также характеризует степень поляризации диэлектрика.
Установим связь между Рв и δсв на примере поляризованного диэлектрика, имеющего форму параллелепипеда (рис. 12.22, а). Такой параллелепипед представим как совокупность диполей, которые, простоты ради, можно рассматривать как «цепочки»; одна из них показана на рис. 12.22, б. Так как внутренние части «цепочки» диполей электрически компенсируются, то такая «цепочка» подобна длинному диполю с расстоянием между зарядами, равным ребру параллелепипеда.
Если на грани параллелепипеда с площадью S возник связанный за ряд qсв, то суммарный электрический момент всего параллелепипеда численно равен qсв l. Объем параллелепипеда V = Sl cos α. На основании двух последних равенств имеем
Учитывая (12.36) и (12.37),получаем
Итак, поверхностная плотность связанных зарядов осв равна нормальной к грани составляющей вектора Ре.
Рассмотрим, например, плоский диэлектрик, расположенный в однородном электрическом поле (рис. 12.23); E0 — напряженность поля в отсутствие диэлектрика (поле в вакууме). Связанные заряды создают однородное поле напряженностью Есв, в результате в диэлектрике будет электрическое поле напряженностью
Известно, что диэлектрическая проницаемость среды ε равна отношению силы взаимодействия зарядов в вакууме к силе расстояния к среде:
Так как напряженность электрического поля пропорциональна силе, дейтвующей на заряд
[см. (12.1)], то аналогичное соотношение можно записать для Ео и Е:
Напряженность электрического поля, образованного связанными электрическими зарядами. Подставляя эту формулой (12.40) в (12.39), получаем
Как и можно было ожидать, поляризованность пропорциональна напряженности электрического поля в диэлектрике. На основании (12.41) вводят понятие диэлектрической восприимчивости среды
которая вместе с диэлектрической проницаемостью е характеризует способность диэлектрика к поляризации и зависит от его молекулярного строения, а возможно и от температуры. В переменных электрических полях г и % изменяются также в зависимости от частоты.
В табл. 21 приведены значения диэлектрической проницаемости для различных биологических сред и некоторых веществ в постоянном электрическом поле при комнатной температуре.
ε | ε | |
Керосин | Белок яичный | |
Масло растительное | 2-4 | Вода |
Стекло | 6-10 | Кровь цельная |
крахмал | Серое вещество мозга | |
молоко коровье | Нерв зрительный Белое вещество мозга |
Различие диэлектрической проницаемости нормальных и патологических тканей и сред как в постоянных, так и в переменных, электрических полях можно использовать для диагностических целей.
Диэлектрик (изолятор) — вещество, среда, материал, практически не проводящие электрический ток. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. Концентрация свободных носителей заряда в диэлектрике не превышает 10 8 см − 3 .
Рассмотрим подробнее процессы в диэлектрике, помещенном во внешнее электрическое поле, например, между разноименно заряженными электродами.
У одной группы диэлектриков, называемых неполярными, при отсутствии внешнего (основного) поля положительно и отрицательно заряженные частицы, входящие в молекулы (атомы), как бы уравновешивают друг друга (собственное поле отсутствует); молекулы их являются электрически нейтральными или неполярными (рис. 1, а). У таких диэлектриков под действием внешнего поля происходит смещение электрического центра отрицательных зарядов (электронов) навстречу направлению поля (рис. 1, б). С точки зрения электрических свойств такая молекула во внешнем поле может рассматриваться как диполь, т.е. пара разноименных точечных зарядов +q и -q (рис. 1,в), находящихся на небольшом расстоянии l друг от друга (плечо диполя). Заряды, образующие диполи диэлектрика, называют связанными, а произведение заряда q на плечо l называется электрическим моментом диполя:
p = ql
Электрический момент рассматривают как векторную величину p, направленную от отрицательного заряда диполя к положительному.
Рисунок 1 — неполярная молекула а) при отсутствии внешнего поля; б) при наличии внешнего поля; в) ее эквивалентный диполь
Рисунок 2 — Поляризованный диэлектрик
Таким образом, неполярные молекулы во внешнем поле становятся диполями, электрические моменты p которых стремятся расположиться в направлении внешнего поля, и диэлектрик поляризуется (рис. 2). При исчезновении внешнего поля смещение исчезают и молекулы снова становятся электрически нейтральными. Рассмотренная поляризация называется деформационной.
У каждой группы диэлектриков, называемых полярными, молекулы всегда полярны (электрические центры электронов и молекулах расположены несимметрично относительно ядер). Полярную молекулу можно считать диполем с зарядами +q и -q и моментом p = ql. При отсутствии внешнего поля все диполи расположены хаотически (рис. 3, а) и суммарный электрический момент диэлектрика равен нулю. При появлении внешнего поля его силы стремятся ориентировать диполи в направлении поля. В результате диполи несколько повернутся в направлении поля и диэлектрик приобретает электрический момент (рис. 3,6). Такая поляризация называется ориентационной.
При той или другой поляризации диэлектрика поле его диполей, или поле поляризации Eп (рис. 4.12), направлено
Рисунок 3 — Полярные молекулы
от положительных зарядов к отрицательным, т. е. противоположно внешнему полю Евн. Напряжённости результирующего поля E, равная алгебраической сумме напряженностей внешнего поля и поля поляризации, меньше напряженности внешнего поля, т. е.
Чем сильнее поляризуется диэлектрик, тем слабее результирующее поле, т. е. меньше его напряженность E при том же внешнем поле, а следовательно, тем больше его диэлектрическая проницаемость Er.
У диэлектрика, находящегося в периодически изменяющемся внешнем электрическом поле, смещение зарядов также будет периодическим, что вызывает нагревание диэлектрика. Чем с большей частотой изменяется внешнее поле, тем сильнее нагрев диэлектрика. Это явление применяется для нагрева и сушки влажных материалов, для получения или ускорения химических реакций, требующих повышенной температуры.
Мощность, идущая на нагрев диэлектрика при периодическом смещении зарядов диэлектрика (связанных зарядов) и отнесенная к единице объеме, называется удельными диэлектрическими потерями.
“>