Меню Рубрики

Генератор тактовых импульсов назначение

Содержание

Тактовый генератор — автогенератор, формирующий рабочие такты процессора («частоту»). В некоторых процессорах (например, Z80) выполняется встроенным.

Кроме тактовки процессора в обязанности тактового генератора входит организация циклов системной шины. Поэтому его работа часто тесно связана с циклами обновления памяти, контроллером ПДП и дешифратором сигналов состояния процессора.

См. также

Для улучшения этой статьи желательно ? :

  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Проставив сноски, внести более точные указания на источники.

Wikimedia Foundation . 2010 .

Смотреть что такое "Генератор тактовых импульсов" в других словарях:

генератор тактовых импульсов — генератор синхроимпульсов — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы генератор синхроимпульсов EN clock … Справочник технического переводчика

генератор тактовых импульсов — takto impulsų generatorius statusas T sritis automatika atitikmenys: angl. clock pulse generator; timing pulse generator vok. Taktimpulsgenerator, m rus. генератор тактовых импульсов, m pranc. générateur d impulsions de rythme, m … Automatikos terminų žodynas

генератор тактовых импульсов — taktų impulsų generatorius statusas T sritis Standartizacija ir metrologija apibrėžtis Generatorius, kuriantis stabilaus periodo impulsus, kurie naudojami tam tikrų įtaisų ar grandinių veikai sinchronizuoti. atitikmenys: angl. cycle repeat timer; … Penkiakalbis aiškinamasis metrologijos terminų žodynas

генератор тактовых импульсов — taktų impulsų generatorius statusas T sritis fizika atitikmenys: angl. clock pulse generator; timing pulse generator vok. Impulszeitgeber, m; Taktimpulsgeber, m rus. генератор тактовых импульсов, m pranc. générateur d’impulsions de rythme, m;… … Fizikos terminų žodynas

задающий генератор (тактовых импульсов) — Ведущий опорный генератор, формирующий тактовые или синхронизирующие импульсы, используемые для управления другими генераторами, которые называются ведомыми. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь… … Справочник технического переводчика

опорный генератор тактовых импульсов — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN reference clock … Справочник технического переводчика

Генератор сигналов — Генератор сигналов это устройство, позволяющее получать сигнал определённой природы (электрический, акустический или другой), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.).… … Википедия

генератор синхроимпульсов, управляемый напряжением — генератор тактовых импульсов, управляемый напряжением — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы… … Справочник технического переводчика

Генератор колебаний электрический — Электронные генераторы большое множество устройств в радиотехнике и электронике (радиоэлектронике). Генератор представляет собой электронный усилитель охваченный цепью положительной обратной связи с фильтром. Содержание 1 Виды генераторов 2… … Википедия

Электронный генератор — Электронные генераторы большое множество устройств в радиотехнике и электронике (радиоэлектронике). Генератор представляет собой электронный усилитель охваченный цепью положительной обратной связи с фильтром. Содержание 1 Виды электронных… … Википедия

Генератор тактовых импульсов генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины.

Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины,

Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая опера­ция в машине выполняется за определенное количество тактов.

Системная шина

Системная шина – это основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой. Представляет собой совокупность каналов обмена информацией внутри компьютера.

Читайте также:  Держатель для гигиенического душа с клапаном

Системная шина обеспечивает три направления передачи информации:

между микропроцессором и основной памятью;

между микропроцессором и портами ввода-вывода внешних устройств;

между основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти).

Именно возможность подключения дополнительных устройств и плат к общей шине реализует принцип «открытой архитектуры». Тип шины является важной характеристикой компьютера, которая наряду с типом МП определяет возможности и диапазон применимости компьютера. Шина входит в состав материнской платы.

Скорость передачи информации по шине, а следовательно и быстродействие подключенного к ней устройства зависит от ее разрядности. Разрядность шины – это количество одновременно передаваемых по ней данных.

Основная память

Основная память(ОП) предназначена для хранения и оперативного обмена ин­формацией с прочими блоками машины. ОП содержит два вида запоминающих устройств: постоянное запоминающее устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ).

ПЗУ (ROM Read-Only Memory) служит для хранения неизменяемой (постоянной) программной и справочной ин­формации, позволяет оперативно только считывать хранящуюся в нем информацию (изме­нить информацию в ПЗУ нельзя).

Постоянное запоминающее устройство строится на основе ус­тановленных на материнской плате модулей и используется для хранения неизме­няемой информации: загрузочных программ операционной системы, программ тестирования устройств компьютера и некоторых драйверов базовой системы ввода-вывода (BIOS) и др.

На современных ПК используются полупо­стоянные, перепрограммируемыезапоминающие устройстваFLASH-па­мять.

Оперативное запоминающее устройство(RAMRandom Access Memoryпамять с произвольным доступом) предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в вычислительном процессе, выполняемом ПК в текущий период времени.

Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каж­дой ячейке памяти отдельно (прямой адресный доступ к ячейке). ОЗУ  энергозависимая память: при отключении напряжения питания информация, хранящаяся в ней, теряется. Основу ОЗУ составляют большие интегральные схемы, содер­жащие матрицы полупроводниковых запоминающих элементов (триггеров). Запоминающие элементы расположены на пересечении вертикальных и горизонтальных шин матрицы; за­пись и считывание информации осуществляются подачей электрических импульсов по тем шинам матрицы, которые соединены с элементами, принадлежащими выбранной ячейке па­мяти.

Конструктивно элементы оперативной памяти выполняются в виде отдельных микрос­хем емкостью 128, 256, 512 Мбайт, 1 Гбайт. На материнскую плату можно установить несколько (четыре и более) модулей памяти. Современные материнские платы ПК поддерживают до 4 Гбайт памяти и более.

Каждая ячейка памяти имеет свой уникальный (отличный от всех других) адрес. Основная память имеет для ОЗУ и ПЗУ единое адресное пространство.

Адресное пространствоопределяет максимально возможное количество не­посредственно адресуемых ячеек основной памяти.

Основная памятькомпьютера делится на две логические области:непо­средственно адресуемую память,занимающую первые 1024 Кбайт ячеек с адресами от 0 до 1024 Кбайт ирасширенную память,доступ к ячейкам которой возможен при исполь­зовании специальных программ-драйверов.

Драйвер специальная программа, управляющая работой памяти или внешними устройствами ЭВМ и организующая обмен информацией между МП, ОП и внешними устройствами ЭВМ.

В современных ПК существует режим виртуальной адресации (virtual– кажущийся, воображаемый). Виртуальная адресация используется для увеличения предоставляемой программам оперативной памяти за счет ото­бражения в части адресного пространства фрагмента внешней памяти.

Генераторы импульсов используют во многих радиотехнических устройствах (электронных счетчиках, реле времени), применяют при настройке цифровой техники. Диапазон частот таких генераторов может быть от единиц герц до многих мегагерц. Здесь приводятся простые схемы генераторов, в том числе на элементах цифровой «логики», которые широко используются в более сложных схемах как частотозадающие узлы, переключатели, источники образцовых сигналов и звуков.

Читайте также:  Балансир для литий ионных аккумуляторов

На рис. 1 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки S1 (то есть он не является автогенератором, схемы которых приводятся далее). На логических элементах DD1.1 и DD1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки S1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 – напряжение низкого уровня; при нажатой кнопке – наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.

На рис. 2 показана схема простейшего генератора импульсов на электромагнитном реле. При подаче питания конденсатор С1 заряжается через резистор R1 и реле срабатывает, отключая источник питания контактами К 1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К 1.1 опять замкнутся, снова начнет заряжаться конденсатор – цикл повторяется.

Частота переключении электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использовании реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно один раз в секунду. Такой генератор можно использовать, например, для коммутации гирлянд на новогодней елке, для получения других световых эффектов. Его недостаток – необходимость использования конденсатора значительной емкости.

На рис. 3 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада. Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15. 17 В и токе 20. 50 мА.

В генераторе импульсов, схема которого приведена на рис. 4, использованы логические элементы микросхемы DD1 и полевой транзистор VT1. При изменении номиналов конденсатора С1 и резисторов R2 и R3 генерируются импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность напряжения высокого уровня на выходе генератора, а резистор R3 – длительность напряжения низкого уровня. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1. 2 мкФ. Сопротивления резисторов R2, R3 – 10. 15 МОм. Транзистор VT1 может быть любым из серий КП302, КП303. Микросхема – К155ЛА3, ее питание составляет 5В стабилизированного напряжения. Можно использовать КМОП микросхемы серий К561, К564, К176, питание которых лежит в пределах 3 … 12 В, цоколевка таких микросхем другая и показана в конце статьи.

При наличии микросхемы КМОП (серия К176, К561) можно собрать широкодиапазонный генератор импульсов без применения полевого транзистора. Схема приведена на рис. 5. Для удобства установки частоты емкость конденсатора времязадающей цепи изменяют переключателем S1. Диапазон частот, формируемых генератором, составляет 1. 10 000 Гц. Микросхема – К561ЛН2.

Читайте также:  В диспетчере устройств нет тачпада asus

Если нужна высокая стабильность генерируемой частоты, то такой генератор можно сделать «кварцованным» – включить кварцевый резонатор на нужную частоту. Ниже показан пример кварцованного генератора на частоту 4,3 МГц:

На рис. 6 представлена схема генератора импульсов с регулируемой скважностью.

Скважность – отношение периода следования импульсов (Т) к их длительности (t):

Скважность импульсов высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.

Генератор, схема которого приведена на рисунке ниже, вырабатывает импульсы как прямоугольной, так и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3. На конденсаторе С2 и резисторе R2 собрана дифференцирующая цепь, благодаря которой на выходе логического элемента DD1.5 формируются короткие положительные импульсы (длительностью около 1 мкс). На полевом транзисторе VT2 и переменном резисторе R4 выполнен регулируемый стабилизатор тока. Этот ток заряжает конденсатор С3, и напряжение на нем линейно возрастает. В момент поступления на базу транзистора VT1 короткого положительного импульса транзистор VT1 открывается, разряжая конденсатор СЗ. На его обкладках таким образом формируется пилообразное напряжение. Резистором R4 регулируют ток зарядки конденсатора и, следовательно, крутизну нарастания пилообразного напряжения и его амплитуду. Конденсаторы С1 и СЗ подбирают исходя из требуемой частоты импульсов. Микросхема – К561ЛН2.

Цифровые микросхемы в генераторах взаимозаменяемы в большинстве случаев и можно использовать в одной и той же схеме как микросхемы с элементами «И-НЕ», так и «ИЛИ-НЕ», или же просто инверторы. Вариант таких замен показан на примере рисунка 5, где была использована микросхема с инверторами К561ЛН2. Точно такую схему с сохранением всех параметров можно собрать и на К561ЛА7, и на К561ЛЕ5 (или серий К176, К564, К164), как показано ниже. Нужно только соблюдать цоколевку микросхем, которая во многих случаях даже совпадает.

Если требуется повысить нагрузочную способность какого либо узла (чтобы, например, подключить динамик или другую нагрузку), можно применить на выходе усилитель на транзисторе, как в схеме на рис. 6, или же включить несколько элементов микросхемы параллельно, как показано на рисунке ниже:

Универсальная печатная макетная плата для двух микросхем. На таких платах удобно собирать несложные схемы с небольшим количеством деталей, как, например, приведенные в этой статье. Детали паяются к контактным площадкам и при необходимости соединятся перемычками. Размеры платы 100 х 55 мм.

На рисунке ниже приводится цоколевка некоторых широко применяемых цифровых логических микросхем КМОП – технологии с элементами «И-НЕ», «ИЛИ-НЕ» и инверторов. Микросхемы серий К564, К176 имеют аналогичную цоколевку, цоколевка же микросхем серии К155 отличается от указанной (но такие уже давно не применяются). Питание указанных микросхем, как уже говорилось выше, может быть от 3 до 15 В (кроме серии К176, которая более критична к напряжению питания и нормально работает при 9В).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *