Меню Рубрики

Видимый свет это электромагнитные волны

Содержание

Узнайте определение и характеристику видимого света: длина волны, диапазон электромагнитного излучения, частота, диаграмма спектров цвета, восприятие цвета.

Видимый свет

Видимый свет – часть электромагнитного спектра, доступная человеческому глазу. Электромагнитное излучение этого диапазона просто именуют светом. Глаза реагируют на длины волн видимого света 390-750 нм. По частоте это соответствует полосе в 400-790 ТГц. Адаптированный глаз обычно достигает максимальной чувствительности в 555 нм (540 ТГц) при зеленой области оптического спектра. Но сам спектр не вмещает все цвета, улавливаемые глазами и мозгом. Например, такие красочные, как розовый и пурпурный, создаются при сочетании нескольких длин волн.

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличается, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Видимый свет формирует вибрации и вращения атомов и молекул, а также электронные транспортировки внутри них. Этими транспортировками пользуются приемники и детекторы.

Небольшая часть электромагнитного спектра вместе с видимым светом. Разделение между инфракрасным, видимым и ультрафиолетовым не выступает на 100% отличительным

На верхнем рисунке отображена часть спектра с цветами, которые отвечают за конкретные чистые длины волн. Красный – наиболее низкие частоты и самые длинные волны, а фиолетовый – наибольшие частоты и кратчайшие длины волн. Излучение солнечного черного тела достигает максимума в видимой части спектра, но наиболее интенсивно в красном, чем в фиолетовом, поэтому звезда кажется нам желтой.

Цвета, добытые светом узкой полосы длин волн, именуют чистыми спектральными. Не забывайте, что у каждого много оттенков, потому что спектр непрерывный. Любые снимки, предоставляющие данные с длин волн, отличаются от тех, что присутствуют в видимой части спектра.

Видимый свет и земная атмосфера

Видимый свет пробивается сквозь оптическое окно. Это «место» в электромагнитном спектре, пропускающее волны без сопротивления. В качестве примера можно вспомнить, что воздушный слой рассеивает голубой лучше красного, поэтому небеса кажутся нам синими.

Оптическое окно также именуют видимым, потому что оно перекрывает спектр, доступный человеку. Это не случайно. Наши предки развили видение, способное использовать огромное многообразие длин волн.

Благодаря наличию оптического окна мы можем наслаждаться относительно мягкими температурными условиями. Функция солнечной яркости достигает максимума в видимом диапазоне, который перемещается, не завися от оптического окна. Именно поэтому поверхность нагревается.

Фотосинтез

Эволюция сказалась не только на людях и животных, но и на растениях, которые приучились правильно реагировать на части электромагнитного спектра. Так, растительность трансформирует световую энергию в химическую. Фотосинтез использует газ и воду, создавая кислород. Это важный процесс для всей аэробной жизни на планете.

Эту часть спектра именуют фотосинтетически активной областью (400-700 нм), перекрывающейся с диапазоном человеческого зрения.

Ви́димое излуче́ние — электромагнитные волны, воспринимаемые человеческим глазом [1] . Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны (частоты) излучения, при этом максимум чувствительности приходится на 555 нм (540 ТГц), в зелёной части спектра [2] . Поскольку при удалении от точки максимума чувствительность спадает до нуля постепенно, указать точные границы спектрального диапазона видимого излучения невозможно. Обычно в качестве коротковолновой границы принимают участок 380—400 нм (790—750 ТГц), а в качестве длинноволновой — 760—780 нм (395—385 ТГц) [1] [3] . Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом (в узком смысле этого слова).

Читайте также:  Весы поларис показывают lo

Не всем цветам, которые различает человеческий глаз, соответствует какое-либо монохроматическое излучение. Такие оттенки, как розовый, бежевый или пурпурный образуются только в результате смешения нескольких монохроматических излучений с различными длинами волн.

Видимое излучение также попадает в «оптическое окно» — область спектра электромагнитного излучения, практически не поглощаемого земной атмосферой. Чистый воздух рассеивает синий свет существенно сильнее, чем свет с бо́льшими длинами волн (в красную сторону спектра), поэтому полуденное небо выглядит голубым.

Многие виды животных способны видеть излучение, не видимое человеческому глазу, то есть не входящее в видимый диапазон. Например, пчёлы и многие другие насекомые видят излучение в ультрафиолетовом диапазоне, что помогает им находить нектар на цветах. Растения, опыляемые насекомыми, оказываются в более выгодном положении с точки зрения продолжения рода, если они ярки именно в ультрафиолетовом спектре. Птицы также способны видеть ультрафиолетовое излучение (300—400 нм), а некоторые виды имеют даже метки на оперении для привлечения партнёра, видимые только в ультрафиолете [4] [5] .

Содержание

История [ править | править код ]

Первые объяснения причин возникновения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах [6] [7] .

Ньютон первый использовал слово спектр (лат. spectrum — видение, появление) в печати в 1671 году, описывая свои оптические опыты. Он обнаружил, что, когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся в прозрачной среде с различной скоростью. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный, оранжевый, жёлтый, зелёный, голубой, индиго и фиолетовый. Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели [6] [8] . Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетового цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.

Гёте, в отличие от Ньютона, считал, что спектр возникает при наложении разных составных частей света. Наблюдая за широкими лучами света, он обнаружил, что при проходе через призму на краях луча проявляются красно-желтые и голубые края, между которыми свет остаётся белым, а спектр появляется, если приблизить эти края достаточно близко друг к другу.

Длины волн, соответствующие различным цветам видимого излучения были впервые представлены 12 ноября 1801 года в Бейкеровской лекции Томасом Юнгом, они получены путём перевода в длины волн параметров колец Ньютона, измеренных самим Исааком Ньютоном. Эти кольца Ньютон получал пропусканием через линзу, лежащую на ровной поверхности, соответствующей нужному цвету части разложенного призмой в спектр света, повторяя эксперимент для каждого из цветов [9] :30-31 . Юнг представил полученные значения длин волн в виде таблицы, выразив во французских дюймах (1 дюйм=27,07 мм) [10] , будучи переведёнными в нанометры, их значения неплохо соответствуют современным, принятым для различных цветов. В 1821 году Йозеф Фраунгофер положил начало измерению длин волн спектральных линий, получив их от видимого излучения Солнца с помощью дифракционной решётки, измерив углы дифракции теодолитом и переведя в длины волн [11] . Как и Юнг, он выразил их во французских дюймах, переведённые в нанометры, они отличаются от современных на единицы [9] :39-41 . Таким образом, ещё в начале XIX века стало возможным измерять длины волн видимого излучения с точностью до нескольких нанометров.

Читайте также:  Swa 555 lux характеристики

В XIX веке, после открытия ультрафиолетового и инфракрасного излучений, понимание видимого спектра стало более точным.

В начале XIX века Томас Юнг и Герман фон Гельмгольц также исследовали взаимосвязь между спектром видимого излучения и цветным зрением. Их теория цветного зрения верно предполагала, что для определения цвета глаз используются рецепторы трёх различных типов.

Характеристики границ видимого излучения [ править | править код ]

Длина волны, нм 380 780
Энергия фотонов, Дж 5,23⋅10 −19 2,55⋅10 −19
Энергия фотонов, эВ 3,26 1,59
Частота, Гц 7,89⋅10 14 3,84⋅10 14
Волновое число, см −1 1,65⋅10 5 0,81⋅10 5

Спектр видимого излучения [ править | править код ]

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разными углами. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены с помощью света одной длины волны (точнее, с очень узким диапазоном длин волн), называются спектральными цветами [12] . Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице [13] :

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый ≤450 ≥667 ≥2,75
Синий 450—480 625—667 2,58—2,75
Сине-зелёный 480—510 588—625 2,43—2,58
Зелёный 510—550 545—588 2,25—2,43
Желто-зелёный 550—570 526—545 2,17—2,25
Жёлтый 570—590 508—526 2,10—2,17
Оранжевый 590—630 476—508 1,97—2,10
Красный ≥630 ≤476 ≤1,97

Указанные в таблице границы диапазонов носят условный характер, в действительности же цвета плавно переходят друг в друга, и расположение видимых наблюдателем границ между ними в большой степени зависит от условий наблюдения [13] .

Электромагнитный спектр представляет диапазон всех частот или длин волн электромагнитного излучения от очень низких энергетических частот как радиоволны до очень высоких частот, таких как гамма-лучи. Свет это часть электромагнитного излучения, которая является видимой для человеческого глаза и называется видимый свет.

Солнечные лучи гораздо шире видимого спектра света и описываются как полный спектр, включающий диапазон длин волн, необходимых для поддержания жизни на земле и влияния Солнца на человека: инфракрасный, видимый и ультрафиолетовый (УФ).

Видимый спектр света включает семь цветных полос, когда солнечные лучи преломляются через призму: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый.

Первым человеком, открывшим что белый состоит из цветов радуги был Исаак Ньютон который в 1666 году направил солнечный луч через узкую щель и затем через призму на стену – получив все видимые цвета.

Видимый свет применение

За годы светотехническая промышленность стремительно развивала электрические и искусственные источники, которые копировали свойства солнечного излучения.

Читайте также:  Боярышник крупноплодный райское яблочко

В 1960-х годов ученые придумали термин «полный спектр освещения» для описания источников, испускающих подобие полного естественного освещения, который включал ультрафиолетовый и видимый спектр необходимый для здоровья организма человека, животных и растений.

Искусственное освещение для дома или офиса подразумевает естественное освещение в непрерывном распределении спектральной мощности который представляет мощность источника в зависимости от длины волны с равномерным уровнем лучистой энергии связанный с флуоресцентными и галогенновыми лампами.

Спектр, как правило, делится на семь диапазонов в порядке уменьшения длины волны и увеличения энергии и частоты. Общее обозначение представляет радиоволны, микроволны, инфракрасное (ИК), видимый свет, ультрафиолетовое (УФ), рентгеновские лучи и гамма-лучи.

Что такое цвет

Пожалуй, наиболее важной характеристикой видимого света является пояснение что такое цвет. Цвет является неотъемлемым свойством и артефактом человеческого глаза. Как ни странно, но объекты “не имеют” цвета – он существует только в голове смотрящего. Наши глаза содержат специализированные клетки, образующие сетчатку глаза, которая действует как приемники, настроенные на длины волн в этой узкой полосе частот.

Излучение в нижней части видимого спектра, имеющей большую длину волны (около 740 нм) воспринимается как красный, в середине, как зеленый, и на верхнем конце спектра, с длиной волны около 380 нм, считается синий. Все остальные цвета, которые мы воспринимаем, являются смесью этих цветов.

Например, желтый цвет содержит красный и зеленый; голубой – смесь зеленого и синего, пурпурный – смесь красного и синего . Белый содержит все цвета в сочетании. Черный – это полное отсутствие видимого излучения.

Цвет и температура

Излучение энергии воспринимается как изменение цвета. Например, пламя паяльной лампы меняется от красноватого до синего и можно отрегулировать, чтобы жарче горела. Этот процесс превращения тепловой энергии в видимую энергию называется накаливание.

Лампа накаливания высвобождает часть своей тепловой энергии в виде фотонов. Около 800 градусов по Цельсию энергия, излучаемая объектом, достигает инфракрасного излучения. При увеличении температуры, энергия переходит в видимый спектр и у объекта появляется красноватое свечение. Когда объект становится жарче, цвет меняется до “белого каления” и в итоге превращается в синий.

Видимое излучение в астрономии

Видимый свет горячих объектов, таких как звезды, может быть использован для оценки их температуры.

Например, температура поверхности Солнца составляет примерно 5800 0 по Кельвину или 5527 0 по Цельсию.

Излучаемая энергия имеет пиковую длину колебаний около 550 нм, которые мы воспринимаем как видимый белый (или слегка желтоватый).

Если бы температура поверхности Солнца была прохладнее, около 3000 0 С, это бы выглядело как красноватый цвет, как звезда Бетельгейзе. Если бы это было жарче, около 12000 0 С, это будет выглядеть голубым, как звезда Ригель.

Астрономы также могут определить, какие объекты из чего состоят, так как каждый элемент поглощает свет в определенных длинах волн, называемых спектром поглощения. Зная спектры поглощения элементов, астрономы могут использовать спектроскопы для определения химического состава звезд, газопылевых облаков и других удаленных объектов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *